Fault-Tolerant Clock Synchronization in CAN

Luis Rodrigues
FCUL*
ler@di.fc.ul.pt

Abstract

This paper presents a new fault-tolerant clock synchro-
nization algorithm designed for the Controller Area Net-
work (CAN). The algorithm provides all correct processes
of the system with a global timebase, despite the occurrence
of faults in the network or in a minority of processes. Such
global time-frame is a requirement of many distributed real-
time control systems.

Designing protocols for CAN is justified by the increas-
ing use of this network in industrial automation applica-
tions. CAN owns a number of unique properties that can
be used to improve the precision and performance of a
clock synchronization algorithm. Unfortunately, some of its
features also make the implementation of a fault-tolerant
clock synchronization service a non-trivial task. Our algo-
rithm addresses both the positive and the negative aspects
of CAN.

1. Introduction

The availability of a global timebase in all correct pro-
cesses, despite the occurrence of faults in a minority of pro-
cesses or in the network itself, is a requirement of many
distributed real-time control systems. For instance, syn-
chronized clocks can be used for the synchronization of ex-
ternal actions, distributed trace of events, measurement of
actions that spawn multiple processes and the development
of (higher level) fault-tolerant distributed algorithms.

A common solution for the global time-base problem
consists in using the node hardware clock to create a vir-
tual clock at each process, which is locally read. All virtual
clocks are internally synchronized by a clock synchroniza-
tion algorithm. Surveys of existing clock synchronization
algorithms can be found in[17, 13]. Clock synchroniza-
tion algorithms differ on issues such as the precision they

*Faculdade de Ciéncias da Universidade de Lisboa
TCurrently at Inesc, Portugal.
HIstituto Superior Técnico da Universidade Técnica de Lisboa

Mario Guimardes’
IST-UTL

Mario.Guimaraes @inesc.pt

José Rufino
IST-UTLY
ruf @digitais.ist.utl.pt

achieve (i.e., how far clocks can be from each other), num-
ber and type of tolerated faults, number and size of mes-
sages exchanged, etc. Naturally, the solution for clock syn-
chronization deeply depends on the properties of the under-
lying network.

The Controller Area Network (CAN)[14, 8] is a com-
munication bus for message transaction in small-scale dis-
tributed environments. Originally designed to reduce ca-
bling complexity and saving wiring costs in automotive
applications, CAN gathers nowadays an increasing accep-
tance in other areas, like control and automation. In the
design and implementation of real-time distributed control
systems, CAN represents a very cost-effective field-bus so-
lution for real-time sensing and actuating in harsh environ-
ments with strict timeliness and reliability requirements.

This paper presents a new clock synchronization algo-
rithm designed for CAN. The paper discusses the CAN
properties that can be used to improve the precision of
clock synchronization and the properties that make the im-
plementation of a fault-tolerant version of such service a
non-trivial task. The algorithm can be implemented ex-
clusively in software, tolerates process and network faults,
and provides precision and accuracy preservation in the or-
der of a few microseconds. The algorithm is inspired of
the generic a posteriori agreement algorithm for broad-
cast networks [22, 23] and of a non fault-tolerant algorithm
specially designed for CAN [4], but differs significantly
from these algorithms. We have named our new algorithm
“phase-decoupled” a posteriori agreement.

The paper is organized in three major parts. The first
part provides the background: Section 2 provides a brief
description of CAN operation, discussing its relevant prop-
erties; Section 3 introduces the clock synchronization prob-
lem; related work is surveyed in Section 4. The second part
describes our work: the design approach is sketched in Sec-
tion 5; a straightforward implementation of the a posteriori
agreement on CAN is described Section 6; the new “phase-
decoupled” a posteriori agreement algorithm is presented
in Section 7. The last part is concerned with improvements
and performance issues: use of CAN message priorities is
discussed in Section 8 and the performance is analyzed in

CAN1 - Validity: if a correct node broadcasts a message, then
the message is eventually delivered to a correct node.

CAN2 - Best-effort Agreement: if a message is delivered to
a correct node, then the message is eventually delivered to all
correct nodes, if the sender remains correct.

CAN3 - At-least-once Delivery: any message delivered to a
correct node is delivered at least once (a message is automati-
cally retransmitted if an error occurs).

CAN4 - Non-triviality: any message delivered to a correct
node was broadcast by a node.

CANS - Bounded Transmission Delay : the time elapsed be-
tween the request of a broadcast and the corresponding message
delivery at any correct node is bounded by two known values
Fmin < [mae,

CANG - Tightness: if the sender remains correct, the last re-
transmission of the same message is delivered to any two cor-
rect nodes at real time values that differ, at most, by a known
interval AT'¢;gps.

Figure 1. CAN Properties

Section 9. Section 10 concludes the paper.

2. Controller Area Network

CAN is a bus with a multi-master architecture[14, 8].
The transmission medium is usually a twisted pair cable.
The network maximum length depends on data rate; typical
values are: 40m @ 1 Mbps; 1000m @ 50 kbps. Bus state
takes one out of two values: recessive, which only appears
on the bus when all the nodes send recessive bits; dominant,
which only needs to be sent by one node to stand on the bus.

Any message sent by a CAN node must be tagged with
a network-wide unique identifier. Access control to the
shared bus uses a carrier sense multi-access with determin-
istic collision resolution (CSMA/DCR) scheme. Bus access
conflicts are resolved through the bitwise comparison of
message unique identifiers: if the transmitted identifier bit
is recessive and a dominant bit is monitored, the node gives
up from transmitting and starts to receive incoming data;
the node transmitting the message with the lowest identifier
goes through and gets the bus. If the arbitration process is
lost, a new attempt to send the message is made when the
bus is released.

The CAN network can be modeled by the set of proper-
ties summarized in Figure 1. We note that only the proper-
ties relevant for clock synchronization are listed: a more
precise model can be found in [16]. Properties CANI
to CAN4 are a consequence of the comprehensive set of
error detection, error signaling and error recovery features

of the CAN network. Messages corrupted by errors are dis-
carded at correct receivers and automatically submitted for
retransmission by a correct sender. This procedure secures
property CAN1. Unfortunately, it also allows the same mes-
sage to be received by a correct node more than once [16]
(property CAN3). When no CAN protocol violation is de-
tected until the last but one bit of a message, any correct
receiver will always locally accept that message, even if the
following bit gets corrupted. Conversely, a correct sender
will consider such corruption an error and it will retransmit
the message.

Properties CAN5 and CANG6 describe system behavior
in the time domain. Ensuring property CANS depends on
multiple factors: traffic patterns, latency classes and offered
load bounds, as well as their relation with CAN message
identifiers[20, 24]; error patterns and maximum error recov-
ery latency [15]. Property CANG is crucial for achieving a
high precision on synchronized clocks. The upper bound
of message reception real time variance (AL'y;g5:) has two
different contributions [10]: the maximum variance on the
network physical propagation delay AI'},,; the maximum
variation of message processing time at any correct receiver,
AT,.c.. By correct design, AT, can be bounded by values
in the order of a few microseconds (some controllers of-
fer dedicated support to minimize this bound [21]). On the
other hand, CAN is particularly advantageous with regard
to variation of AL, the bus transmission line is operated
in a quasi-stationary mode, giving enough time for bit sig-
nal stabilization along the bus before performing sampling.
The exact value of AT}, depends on the bus lenght and on
network configuration parameters, but it is always a small
fraction of the network bit time (10%-30%).

3. Clock synchronization

The goal of clock synchronization is to establish a global
timebase in a distributed system composed of a set of pro-
cesses P which can interact exclusively by message pass-
ing. Processes can only observe time through a clock. One
commonly used solution to achieve this goal is to provide
each process p (p € P) in the distributed system with an
imperfect physical clock pc, (notation closely follows that
of [17]). The clock at a correct process p can then be viewed
as implementing, in hardware, an increasing continuous'
function pc, that maps (non-observable) real time” ¢ to a
clock time pec,(t). Through a clock synchronization algo-
rithm it is possible to derive, from the physical clock at each
process p, a virtual clock ve,, satisfying the precision (VC1),
rate (VC2), and accuracy (VC3) properties, presented in

'Tt is known that digital clocks have a finite granularity and increase by
ticks [10]. However, for sake of clarity, we chose to simplify our expres-
sions in this matter.

2In an assumed Newtonian time frame.

PC - Physical clocks; VC - Virtual clocks
(for some positive constants p and p, Vi1 € P)

PC1- Initial value,
pcx(0): 0 < pe(0) < p

PC2- Rate,
Fp:0<1—p < penl=penli) <1t p for 0 <ty <t

VC1 - Precision,

Fdo: |vek(t) —ve(t)] < dy for 0< ¢
VC2 -Rate,

Jpui 1 — py < Uck(ti)_'uck(tl) <1+ po

2—t1

for 0 <t1 <to

VC3 - Accuracy,
Jay: |vek(t) —t| < @, for 0<¢

Figure 2. Summary of Clock Properties.

Figure 2.

Precision 4, characterizes how closely virtual clocks
are synchronized to each other, p, is the drift rate of vir-
tual clocks. Accuracy a, characterizes how closely virtual
clocks are synchronized to real time. Due to the nonzero
drift rate of physical clocks, accuracy cannot be ensured
without some external source of real time. However, a good
algorithm should maintain clocks as close as possible to the
best real time source available, which may be one of the
correct clocks in the system. In that sense, minimizing? p,,
should preserve accuracy, and that term will be used in this
paper when informally discussing these attributes.

Since physical hardware clocks can be permanently
drifting from each other, virtual clocks must be resynchro-
nized from time to time. A clock synchronization algorithm
should then be able to: (i) generate a periodic resynchro-
nization event. The time interval between successive syn-
chronizations is called the resynchronization interval, de-
noted 7'; (ii) provide each correct process with a value to ad-
just the virtual clocks in such a way that precision and rate
hold. The clock adjustment can be applied instantaneously
or spread over a time interval. In both techniques, for the
sake of convenience, the adjustment is usually modeled by
the start of a new virtual clock upon each resynchronization
event|[5, 17].

The worst-case clock precision d, is obtained by adding
to the precision d,; achieved with the synchronization the
drift between clocks during the resynchronization interval
T, thatis §, = 0,;+ 2pT. The physical clock drift p is typi-
cally of the order of 10~* to 10~ and the resynchronization

3In any case, limited to p[18].

interval T' can be selected such that the desired precision is
guaranteed. If the algorithm exhibits a good precision en-
hancement property a longer resynchronization interval can
be chosen.

4. Related work

Software based clock synchronization protocols can be
fully generic or tailored for certain classes of networks. In
this paper we are looking for solutions that can exploit the
CAN properties mentioned in Section 2, namely the ability
to generate a “simultaneous” event through the broadcast of
a message. Thus we will concentrate our attention on two
algorithms that are targeted for networks with these proper-
ties.

4.1. A posteriori agreement

The a posteriori agreement for clock synchroniza-
tion [22, 23] is a technique that uses tightness property of
some networks (see CANG6) to avoid the influence of the
network access delay variability on the precision of virtual
clocks. An aim of the a posteriori agreement technique is
to improve precision by making the clock synchronization
algorithm depend on Al';;,p¢, instead of depending on the
variance of message delivery (AT = I'™® — ™" ac-
cording to property CANS) or on the worst-case message
delivery (I'"**). The improvement on clock precision is
high because ATl'y;4p¢ << AI (note that AI" also includes
the network access delay variance).

Synchronization starts with each process disseminating
a start message at a pre-agreed instant on its clock. Re-
ception of start messages trigger the start of a new virtual
clock. Note that, due to process or network faults, not all
broadcasts will be received by all correct processes. Thus,
clocks triggered by a start message must be kept merely
as candidates for synchronization until an agreement is ob-
tained on a broadcast yielding high precision. This agree-
ment can be used to select an adjustment to the absolute
value of the elected clock, in order to yield the best accu-
racy preservation possible. Since the agreement is executed
after the candidate virtual clocks have been started, the algo-
rithm was called a posteriori agreement. As a consequence
of this approach, the resulting precision is mainly limited by
AT't;4n+ and marginally by the time required to reach agree-
ment (I'M2%). The precision achieved by the a posteriori

agreem
agreement algorithm was proven [22, 23] to be limited by:

dvi > (L+ p)ATignt + 20T G reem
The general algorithm is communication and agreement
protocol independent, i.e., the choice of different communi-
cation infrastructures and agreement protocols would lead

to different implementations of the algorithm. An im-
plementation of the a posteriori technique for local area
networks such as Ethernet and Token-Bus has been pro-
posed [23]. However, the bandwidth and message size re-
quired by such implementation is not supported by the max-
imum data field size (8 bytes) allowed in CAN messages.
Our work departs from designing a specialization of the
original a posteriori protocol that defines an agreement pro-
tocol tailored to the CAN network.

4.2. CAN oriented algorithms

Gergeleit and Streich have proposed a clock synchro-
nization algorithm for CAN based on a master-slave con-
figuration [4]. The algorithm can be seen as a non fault-
tolerant implementation of the a posteriori agreement ap-
proach. The master periodically emits a start message that
triggers the start of a new virtual clock in all the slaves.
CAN properties guarantee that, if the master survives, these
virtual clocks are precise. Accuracy is achieved by calculat-
ing the adjustment a posteriori. Since the algorithm is not
fault-tolerant, no agreement protocol needs to be executed.
The master sends an absolute clock value based on its own
measurement of the delay incurred for the dissemination of
the start message (typically, the master will be connected to
an external source of time) and all slaves adjust their clocks
accordingly. To reduce traffic, the master reference value
required for the adjustment is piggybacked in the next start
message.

A positive aspect of this algorithm is its low bandwidth
consumption. A single message at every synchronization
round is enough to keep the clocks synchronized. The major
drawback is its complete lack of tolerance with regard to the
failure of the master process. To overcome this drawback it
was suggested to use multiple cooperating masters using a
token-based approach; in each synchronization round a dif-
ferent master would be responsible for ensuring synchro-
nization [1]. Unfortunately, since CAN does not guarantee
reliable delivery when the sender fails [16], it is possible for
a failed master to leave the system in an inconsistent state.

4.3. Other approaches

A major limitation of all known software clock syn-
chronization algorithms designed for arbitrary networks, is
that precision is limited either by the variance of the mes-
sage delivery delay [12], or worse, by its upper bound [18].
This problem may be minimized with hardware support, ei-
ther by implementing clock synchronization exclusively by
hardware [7, 11] or by using hybrid schemes [13] which at-
tempt at reducing that variance, for instance, using clock
synchronization units that are able to timestamp mes-
sages [9] and receive GPS signaling. Although designing

specifically for CAN, our goal is to allow the use of “off-
the-shelf” components. Statistical techniques can also be
used to minimize the effect of the network variance [2]. The
work of [3] provides an interesting integration of internal
and external clock synchronization but, being based on re-
mote clock reading, it is not clear how it can be adapted to
exploit CAN tightness.

S Design overview

The CAN owns a number of characteristics that offer the
potential for achieving highly precise clock synchroniza-
tion, in particular it exhibits a network tightness in the order
of a few microseconds and built-in error handling facilities.
On the other hand, it has a low bandwidth (compared with
today’s LANs) and supports only small messages which fa-
vors simple protocols. Also, only best-effort agreement is
provided (i.e., in case of sender failure the message may
be received by just a subset of the nodes) which difficults
agreement on clock values.

As seen in the previous sections, some clock synchro-
nization algorithms have been designed specifically for
CAN. However, these protocols exhibit limited or no fault-
tolerance features, having thus limited applicability for de-
pendable applications. On the other hand, most of the
generic algorithms described in the literature cannot make
explicit use of the unique (positive) features of CAN.

The a posteriori agreement approach seems suitable for
CAN since the precision achieved is in the order of the net-
work tightness. Our work is based on the idea of applying
the a posteriori technique to CAN. However, limitations of
a straightforward implementation of this technique, lead us
to develop a new algorithm, particularly suited for the CAN
network.

6. What’s missing for a posteriori agreement on
CAN

To motivate the need for a new algorithm, we describe
first a straightforward implementation of the a posteriori
agreement technique for CAN. The algorithm is obtained
by enhaning the generic a posteriori algorithm described
in[22, 23] with a CAN-specific agreement protocol. The
proposal of an agreement protocol suited to CAN is also a
contribution of this work.

The resulting algorithm offers excellent precision and re-
quires only two phases of message exchanges. On the other
hand, it requires a large number of messages in the first
phase and does not provide good accuracy. A run of this
basic algorithm requires at least n(n + 1) messages; in the
next section, we will describe an algorithm that lowers the
number of messages required down to 3n.

The algorithm is fully decentralized. In order to tolerate
f faults, at least 2f + 1 processes must try to generate a
simultaneous event (for clarity, we will simply assume that
all processes try to do so). No matter how many processes
trigger the synchronization algorithm, all correct processes
need participate in the agreement to select one of the simul-
taneous events as the source of the clock for the next syn-
chronization interval. We assume that there is a total order
of the processes identifiers; this order is used to rank votes
on the agreement phase of the algorithm.

A pseudo-code description of the algorithm is given in
Figure 3. Let T denote the resynchronization interval. Each
period is initiated by a process p when its virtual clock
reaches i7", the time for synchronization round ¢, by broad-
casting a (start, i) message on the network (1. 107). If
the sender does not fail, CAN guarantees that this message
will be eventually received by all correct processes at ap-
proximately the same time (properties CAN2 and CANG).
Note however, that the occurrence of faults may lead to
message retransmission by the CAN protocol “cast in sil-
icon”. Thus, duplicates of the same (sfarr) message can be
received (property CAN3). Each time a start message is re-
ceived a new candidate clock is started (duplicates restart
this clock). Typically, several processes will send a start
message at approximately the same time. Only tight events
may be eligible as candidates. In CAN, only the sender can
detect reliably when a message is delivered to all correct
processes. Thus, only the sender can safely propose its own
message (and associated clock) as a valid candidate.

When a new candidate clock is started, it is started with
some dummy pre-defined value (1. 113). In fact, candidate
clocks may be precise but are inaccurate because there is
a variable and unpredictable delay in the dissemination of
the start message. At the end of the agreement, the selected
clock is adjusted to a value that best preserves the accuracy.
In this basic algorithm, this adjustment is computed by the
sender of the associated start message, based on the local
measurements, at each process, of the virtual time at which
the corresponding message was locally received. Let rt*?
denote the reception time of the (start, i) message from p,
according to vcé‘l. In order to make this information avail-
able at the sender, every (start, i) message is acknowledged
directly to the sender p by every process g, with an {ack, i,
p, rttP) message (1. 119).

The protocol proceeds with a second phase of message
exchange where the processes agree on which candidate
clock should be used for the next round. This phase is initi-
ated by a sender p when: it detects the succesfull transmis-
sion of its own start message; at least f + 1 start messages
have been received; it has received all the associated ack
messages or the correponding AckTimer has expired (l.
124). When these conditions are satisfied, the sender com-
putes the adjustement for its own clock, by selecting the

100
101
102
103
104
105
106

107
108
109

110
111
112
113
114
115
116
117
118
119
120

121
122
123

124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141

142
143
144
145

// variable description

/I voted®: voted candidate.

/' RT*[]: reception times.

// A% adjustment for this candidate.
/I starts?, acks?, and votes¢: counters
starts? := 0; acks? := 0;

voted’ := NONE;

when vc' " (NOW) = iT
and voted* = NONE do
broadcast ((start, i));

when received S=(start, i) from g do
rth9 = et~ (NOW);
/I start new candidate clock
cch? (NOW) := 0;
if not-duplicate(S) then starts’ := starts? 4 1;
if p = q then // my own start message
acks? := acksi+1;
RT¢[p] :=rtia
else
unicast ({ack, i, 75:9));
if notstarted(AckTimer) then start(AckTimer);

when received A=(ack, i, t'P) from q # p do
RT¢[q] :=rt®P
if not-duplicate(A) then acks? := acks? + I;

when transmission-confirmed ((start, i))
and starts? > f + 1
and (acks? = N or expired(AckTimer))
and voted’ = NONE do

N := acks?;
voted® :=p;
votes® :=0;

At = median(Vy RT[x] > 0);
broadcast((vote, i, p, A*));

when received V=(vote, i, v, A?) from ¢ # p
and not-duplicate(V) do

if not-started(VoteTimer) then start(VoteTimer);

if rank(v) > rank(voted?) then do

voted® :=v;
votes® :=1;
At = AY;

broadcast((vote, i, v, AV});
if voted” = v then votes® := votes® +1;

when expired(VoteTimer) or votes? =N
and voted® # NONE do

vt = ectrvoted® + Al
N:= votes’;

Figure 3. A posteriori algorithm for CAN

median value of the receive times returned in the ack mes-
sages and broadcasts a (vote, i, p, A*¥Ust:P) message (1.
132). When another process g receives the vote message, it
confirms this choice by sending a similar vofe message (l.
140). In the best case, all processes vote on the same can-
didate clock and this phase ends as soon as the same vote is
received from every correct process (1. 142). If two or more
senders receive (approximately at the same time) the confir-
mation of the transmission of their own start messages, con-
current votes for different candidates will be issued. In this
case, the vote with higher rank is preferred (this means that
a process may change its vote during this phase). This vot-
ing protocol is similar to the election algorithm described
in [19]. It should be noted that the adjustment computed by
this algorithm may be inaccurate because there is no way to
match the acknowledgement (that carry the values needed
to compute the adjustment) with the appropriate retransmis-
sion of the start message (that triggered the clock being ad-
justed). Our new protocol adresses this aspect.

The protocol is further complicated due to the possibil-
ity of process failures. In such case, some ack or vote mes-
sages will be missing. To prevent deadlock, a simple time-
out mechanism is used in both phases: if an ack (or vote)
message is missing after a pre-defined time limit the faulty
processes are marked as failed. Note that the CAN proper-
ties guarantee the reliable and timely delivery of messages
when the sender is correct. Thus, the protocol embodies a
minimal fault-detection functionality that can be provided
as input for a complementary membership service.

Assume that all processes issue a start message. Accord-
ing to the a posteriori agreement algorithm, all processes
must acknowledge these start messages. Finally, in the best
case, all processes vote on the same candidate clock. Thus,
the protocol requires at least n start messages, each requir-
ing n — 1 acknowledgements and n additional vote mes-
sages, for a total of n 4+ n(n —1) +n = n(n + 1) messages.
The worst-case is much higher than this: start messages
may need to be retransmitted and all retransmissions need
an acknowledgement from every process; several processes
may concurrently vote for their own candidate clock, result-
ing in a cascade of voting messages. In the next section, we
will present a “phase-decoupled” algorithm that alleviates
these problems.

7. The new “phase-decoupled” a posteriori al-
gorithm

The “phase-decoupled” a posteriori algorithm addresses
the drawbacks of the basic a posteriori algorithm in face of
the properties of the CAN network, namely the large num-
ber of acknowledgement messages, the potentially large
number of concurrent votes, and the inaccuracy of clock ad-
justments (due to automatic retransmissions). These prob-

lems are solved using different mechanisms.

In the original a posteriori agreement protocol, acknowl-
edgement messages are used for two different purposes: to
disseminate reception times (used to compute the adjust-
ment) and to ensure (and detect) reliable delivery of the start
message. In CAN, reliable delivery is guaranteed as long as
the sender remains correct. Thus, acknowledgements are
only needed to disseminate reception times. The proposed
modification is based on the observation that only the se-
lected clock needs to be adjusted and that the number of
messages is strongly reduced if the reception times for the
other clocks are not disseminated. This can be achieved
by voting on the candidate clock before the acknowledg-
ment phase. Since reception times are no longer available
at voting time, the reduction on the number of messages is
achieved at the cost of “decoupling” the start phase from the
adjustment computation phase (which are overlapped in the
simple protocol), thus the name of the new protocol.

Decoupling these two phases has another advantage in
terms of accuracy of clock synchronization. Since acknowl-
edgements are only produced when the start is stable (i.e.,
when it has already been successfully transmitted), all dis-
seminated reception times refer to the last correct transmis-
sion. This allows the final adjustment to be computed based
on accurate reception times.

The problem of concurrent votes is a consequence of
the precision of clock synchronization. Since all clocks ex-
hibit approximately the same time, all processes will reach
+T" at approximately the same real time, all processes will
send a start message concurrently, and so on. Although the
network will enforce a serialization of all these messages,
the delays incurred by such serialization are not enough
to prevent concurrent executions. It should be noted that,
with most existing CAN controllers, it is difficult to cancel
in due time a message submitted for transmission. In the
“phase-decoupled” algorithm this problem is solved using a
simple Time-Division Multiplexing (TDM) approach: each
processes delays its own vote by a period that is inversely
proportional to its rank. This artificially extends the agree-
ment phase but, as seen in Section 4.1, this is not the major
factor on the final precision.

A pseudo-code description of the “phase-decoupled” al-
gorithm is given in Figure 4. As in the basic algorithm,
processes transmit a start message when their virtual clock
reaches the time to resynchronize (1. 210). Unlike the ba-
sic algorithm, start messages do not generate acknowledge-
ments. Instead, when enough start messages have been ob-
served, the voting phase is immediately started (1. 220).

The voting phase is similar to that of the basic algorithm
with some minor changes. One of the differences its that,
instead of the final adjustment, voting messages disseminate
the reception time of the associated start message (1. 226).
The other difference is that each process delays the vote on

200 // variable description

201 /I voted®: voted candidate.

202 // RT?[]: reception times.

203 /I A¥: adjustment for this candidate.
204 /I adjuster®: proposer of the adjustment.
205/ startst

206 Vi votesi, and adjustsi: counters

207 starts® := 0;

208 voted® := NONE;

209 adjuster’ := NONE;

210 whenvci~Y(NOW) =iT

211 and voted’ = NONE do

212 broadcast((start, 1));

213 when received S=(start, i) from g do

214 rthd = pct—1 (NOW);

215 // start new candidate clock

216 cct9 (NOW) :=0;

217 if not-duplicate(S) then starts? := starts® + 1;
218 when transmission-confirmed((start, i))do
219 start(VoteTDMTimer, rank(p));

220 when expired(VoteTDMTimer)

221 and starts? > f + 1

222 and voted’ = NONE do

223 voted? := p;

224 votes? := 1;

225 RT¢[p] := rttP;

226 broadcast({ vote, i, p, 75));

227 when received V = (vote, 1, v, rthv) from g # p
228 and not-duplicate(V) do

229 if not-started(VoteTimer) then start(VoteTimer);
230 RT#[q] = rtt?;

231 if rank(v) > rank(voted?)

232 or voted! = NONE then

233 voted? :=v;

234
235
236
237
238
239

240
241
242

243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262

263
264
265
266

votesi =1;
broadcast({ vote, i, v, rthv »;
else-if voted® = v
and (z =0
or (i > 0 and rt>¥ > 0)) then
votes® := votest+1;

when expired(VoteTimer)
or votes* = N do
start(AdjustTDMTimer, rank(p));

when expired(AdjustTDMTimer)
and adjuster’ = NONE do
adjuster’ := p;
adjustsi =0;
N := votesi;
A’ = median(Vg RT*[z] > 0);
broadcast(({ adjust, i, p, A? »;

when received D=(adjust, i, a, A%) from g # p
and not-duplicate(D) do
if not-started(AdjustTimer) then start(AdjustTimer);
if rank(a) > rank(adjuster?)
or adjuster’ = NONE then
adjuster? := a;
adjusts® := 1;
At = A2,
broadcast({ adjust, i, a, A%));
else-if adjuster’ = a
and (: =0
or (i > 0 and rt*¥ > 0))then
adjusts? := adjusts?+1;

when expired(AdjustTimer)
or adjusts® =N do
et = cci,votedi + At
N:= adjustsi;

Figure 4. The “phase-decoupled” algorithm

its own clock by an amount of time that is dependent of
its rank (I. 218). If correct, the process with higher rank
will propose its own clock first and the other processes will
confirm this vote. Only in the case of failure, the process
with succeeding rank will issue a different vote message.
As before, timeouts are used to terminate the voting phase
in case of missing votes.

At the end of the voting phase, all correct clocks have
agreed on the same candidate clock (1. 240). However, dif-
ferent processes can have different sets of votes. Note that
if a process fails during the transmission of its own vote the
CAN does not ensures the reliable delivery of this message.
Thus, processes cannot apply a local function to compute
the adjustment for the selected clock: an additional agree-
ment phase needs to be performed. This second phase is
quite similar to the voting phase. The process with higher
rank will locally compute the adjustment and disseminate it

using an adjust message (1. 249). This message needs to be
confirmed by all correct processes (1. 258). Again, in case
of failure of the process with higher rank, all other processes
would, in turn, compute and propose an adjustment for the
selected clock.

8. CAN message priorities

The CAN priority based arbitration scheme allows the
assignment of a different priority to each protocol message.
This section discusses how this feature can be exploited
to promote faster protocol termination. Our proposal as-
sumes that the message identifiers are constructed using
three fields, namely protocol priority, message priority and
rank priority.

The protocol priority field is mapped onto the high pri-
ority bits of the message identifier and reflects the relative

priority of clock synchronization with regard to other activ-
ities in the system. A positive feature of our algorithm is
that, as long as enough bandwidth is reserved to execute the
protocol in due time, the use of the higher CAN priorities is
not required in order to achieve good precision.

The message priority field reflects the relative priori-
ties of protocol messages with regard to each other. Here,
message urgency increases as the algorithm execution ap-
proaches its final phase (that is, the adjust messages have
higher priority than the vofe messages, which in turn have
higher priority than starts). The rationale is that, as soon
an a new protocol phase is started, messages regarding pre-
vious phases become obsolete and should be given a lower
priority (the time-division multiplexing scheme minimizes
the number of these messages).

Finally, the rank priority field ensures that messages of
the same type are given a priority which reflects the rank of
their senders. This means that the vote (or adjust) from the
process of higher rank (which is bound to win the election)
is given a higher priority than other votes.

The use of the CAN arbitration scheme complements the
time-division multiplexing technique when, due to process-
ing or network transient overloads, requests from differ-
ent processes compete for network access. In the perfor-
mance section, this CAN-based message ordering scheme
was used in all simulations.

9. Performance

This section discusses the performance of the “phase-
decoupled” a posteriori algorithm in terms of number of
messages exchanged, precision and accuracy preservation.

9.1. Number of messages

The minimum number of messages generated by an exe-
cution of the algorithm is 7 starts, n votes and n adjusts, for
atotal of Nyin = 31 messages4. Worst-case values depend
on the number of faults and on system configuration. If all
nodes configured to generate a start message reach the syn-
chronization point approximately at the same time, the first
phase of the algorithm generates n messages. Nodes should
then vote for electing a candidate clock. In the worst-case,
each node begins voting on its own clock, changing after-
wards the vote, successively, to higher rank clocks. This
means each node generates a number of messages equal to
its rank numbering; the sum of the messages generated by
all the nodes represents the sum of the first n terms of an

4Actually, through a network management interface, it is possible to
load a configuration where only 2f + 1 processes are required to send a
start message. However, to simplify the explanation, we have selected a
configuration where all nodes run the same code.

- -m - Without TDM
® With TDM
A Minimum

Nb. Messages

Nb. Nodes

Figure 5. Variation of generated messages
with number of nodes

arithmetic sequence with ratio one. This model applies also
to the adjustment phase. Thus:

n n
Npaz=n+ = (1+n)+ = (1+n)=n>+2n

2 2

Naturally, the average number of messages exchanged
on a typical execution environment is much less than NV,
The purpose of the time-division multiplexing scheme on
the voting and adjust phases is to approximate the average
number of messages exchanged to N,,,i,. To evaluate the
effectiveness of our approach, we have used the MIT LCS
Advanced Network Architecture group’s network simulator
(NETSIM [6]). In this experiment, we have considered the
CAN 2.0B @ 1 Mbps and we have set the time-division
multiplexing timers for a value of 400us. This value is 2.5
times bigger than the time required to propagate a message
(160ps) but is still small enough to have a minor impact
on clock precision in case of process crashes (each timeout
adds 400us to the agreement phase, thus even two consecu-
tive failures would affect the precision in less than 103 1s).
The results for a fault-free scenario are shown in Figure 5,
where the use of the time-division multiplexing method is
compared with a scenario that does not use such technique.
It is clear that the number of messages generated in the
former case closely approximates the minimum number of
messages required by the algorithm.

9.2. Precision and accuracy preservation

The precision achieved by an algorithm based on the a
posteriori agreement technique was proven [23] to be lim-
ited by:

dvi > (14 p)ATtighe + 20T gyreem

Additionally, at each resynchronization there is a po-
tential accuracy loss of, approximately, (1 + p)AT'tgne
(see [23] for exact formulas).

Increment on Tagree (%)

0 2 4 6 8 10 12 14 16
High-Priority Traffic Load (%)

Figure 6. Average agreement time versus net-
work load

Intended precision T | Worst-case accuracy loss
(us) (s) (us/hour)
50 20 3600 + 1800
100 45 3600 + 800
200 95 3600 + 370
300 145 3600 + 240

Table 1. Resynchronization interval

The parameters needed to compute results are: AL y;op4,
which depends on maximum network propagation delay
variance and on the maximum variance of timestamping
processing overheads that can be observed at any correct re-
ceiver; p, that depends on the specifications and operational
condition of the clock; and I'GE7%,,, which depends on the
number of tolerated faults, resulting number of messages
exchanged, configuration of the time-division multiplexing
timers using for voting phases, and on background traffic of
higher priority.

To evaluate the impact of the high-priority traffic load on
the time required to reach agreement we have run a series
of simulations of our protocol under different traffic loads.
The results are depicted in Figure 6. It can be seen that even
a traffic load of high-priority background traffic in the order
of 15% has a small impact on the agreement time (which in
turn has only a minor impact on clock precision).

Table 1 presents the resynchronization interval required
for different values of worst-case precision. It also shows
the maximum accuracy loss per hour of operation using
such a resynchronization interval. We have considered a
value of 10us for AL';;45, (a conservative value) and a value
of p = 1075, common for crystal based clocks. The worst-
case accuracy loss has two components, one that depends
exclusively of the drift of physical clocks (without exter-
nal synchronization, this is also the best accuracy preserva-

tion achievable [18]), and other that represents the protocol-
induced accuracy loss. If required, the a posteriori agree-
ment technique can be extended to perform external syn-
chronization [23]. Nevertheless, it is important to exhibit a
small accuracy loss even when external synchronization is
used (this makes the system robust to transient faults of the
external source).

6.0

o
o

n - -W - Peak: worst-case
‘ ® Peak: typical

»
)
L]

‘ —&—— Peak: minimum
) | —— Average - Resyn. Period

d
o

Bandwidth Consumption (%)
-

3
o
L}

m Intended Precision:100us
. m Resynchronization Period: 45 s

o
L]

o
o

Nb. Nodes

Figure 7. Bandwidth consumption (T=45s)

As it can be seen, to offer a precision in the order of
100us (which is less than the average time required to dis-
seminate a message in the CAN) clocks need to be synchro-
nized only once every 45s and the protocol induced accu-
racy loss is much smaller than the accuracy loss due to the
drift of the physical clocks. Figure 7 shows the CAN band-
width consumption due to the protocol traffic in this sce-
nario for different number of nodes. Since clock synchro-
nization traffic exhibits a bursty behavior, the figure shows
worst-case, minimum and typical values of bandwidth con-
sumption during the execution of the protocol. Again, it
should be noted that typical values are much lower than the
theoretical worst-case value. The figure also shows the aver-
age bandwidth consumption over the entire synchronization
period (lower line); naturally these values are very small.

10. Conclusions and future work

Designing clock synchronization protocols for CAN is
justified by the increasing use of this network in indus-
trial automation applications. Our work departures from
a straightforward implementation of the a posteriori algo-
rithm on CAN, which is obtained by enriching the generic
algorithm described in [23] with a CAN-specific agreement
protocol. This approach has several limitations, namely
the large number of messages exchanged and the low ac-
curacy of clock synchronization. It is interesting to ob-
serve that an optimization for local area networks (the use
of acknowledgements for the dual purpose of reliability and
clock value collection) actually degrades the performance
on CAN. A new “phase-decoupled” a posteriori agreement
algorithm that carefully addresses the limitations of CAN

was presented. The algorithm offers a tight precision and
good accuracy with a reasonable cost. For instance, to en-
sure a precision of 100us, clocks have to be synchronized
only once every 45s and the accuracy loss is only in the
order of 4.2ms per hour.

It was shown that the a posteriori agreement technique
can be combined in an hierarchical manner with other syn-
chronization algorithms to provide clock synchronization
beyond the borders of a single broadcast segment [23]. A
similar approach could be used here to synchronize several
CAN buses. The integration of this technique with the ap-
proach suggested in [3], would also allow to support both
internal and external synchronization.

References

[1] E. Christer, H. Thane, and M. Gustafsson. A communica-
tion protocol for hard and soft real-time computer systems.
In Proc. of the European Workshop on Real-Time Systems
(EURWRTS), L’ Aquila, Italy, Jun. 1996.

F. Cristian. Probabilistic clock synchronization. Distributed

Computing, 3(3):146-148, 1989.

C. Fetzer and F. Cristian. Integrating external and internal

clock synchronization. Journal of Real-Time Systems, 12(2),

1997.

M. Gergeleit and H. Streich. Implementing a distributed

high-resolution real-time clock using the CAN-Bus. In Proc.

of the st International CAN-Conference, Mainz, Germany,

Sep. 1994.

J. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-

tolerant clock synchronization. In Proceedings of the 3Rd

ACM Symp. on Principles of Distributed Computing, pages

89-102, Vancouver Canada, Aug. 1984.

A. Heybey. The network simulator version 2.1. Technical

report, M.L.T., Sep. 1990.

[7]1 A.Hopkins, T. Smith, and J. Lala. FTMP - A highly reliable

fault-tolerant multiprocessor for aircraft. Proceedings of the

IEEE, 66(10):1221-1240, Oct. 1978.

ISO. ISO International Standard 11898 - Road vehicles - In-

terchange of digital information - Controller Area Network

(CAN) for high-speed communication, Nov. 1993.

H. Kopetz and W. Ochsenreiter. Clock syncronization in

distributed real-time systems. IEEE Transactions on Com-

puters, C-36(8):933-940, Aug. 1987.

[10] H. Kopetz and W. Schwabl. Global time in distributed real-
time systems. Technical Report 15/89, Technische Univer-
sitat Wien, Wien Austria, Oct. 1989.

[11] C. Krishna, K. Shin, and R. Butler. Ensuring fault toler-
ance of phase-locked clocks. IEEE Transac. Computers, C-
43(8):752-756, Aug. 1985.

[12] J. Lundelius and N. Lynch. An upper and lower bound for
clock synchronization. Information and Control, (62):190—
204, 1984.

[13] P. Ramanathan, K. Shin, and R. Butler. Fault-tolerant clock
synchronization in distributed systems. IEEE, Computer,
23(10):33-42, Oct. 1990.

2

—

3

—

[4

—

(5

—

[6

—

(8

—_—

[9

—

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

Robert Bosch GmbH. CAN Specification Version 2.0, Sep.
1991.

J. Rufino and P. Verissimo. A study on the inaccessibility
characteristics of the Controller Area Network. In Proc. of
the 2nd International CAN Conference, London, England,
Oct. 1995.

J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcasts in CAN. In Digest of
Papers, The 28th IEEE International Symposium on Fault-
Tolerant Computing, Munich, Germany, Jun. 1998.

F. Schneider. Understanding protocols for byzantine clock
synchronization. Technical report, Cornell University,
Ithaca, New York, Aug. 1987.

T. Srikanth and S. Toueg. Optimal clock synchroniza-
tion. Journal of the Association for Computing Machinery,
34(3):627-645, Jul. 1987.

A. Tanenbaum. Modern Operating Systems. Prentice Hall,
1992.

K. Tindell and A. Burns. Guaranteeing message latencies on
Controler Area Network. In Proc. of the Ist International
CAN Conference, Mainz, Germany, Sep. 1994.

K. Turski. A global time system for CAN networks. In
Proc. of the Ist International CAN Conference, pages 3.2—
3.7, Mainz, Germany, Sep. 1994.

P. Verissimo and L. Rodrigues. A posteriori agreement for
fault-tolerant clock synchronization on broadcast networks.
In Digest of Papers, The 22nd International Symposium on
Fault-Tolerant Computing, Boston, USA, Jul. 1992. IEEE.
P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray:
a precise and accurate global time service for large-scale
systems. Journal of Real-Time Systems, 12(3):243-294,
1997.

K. Zuberi and K. Shin. Non-preemptive scheduling of mes-
sages on Controller Area Networks for real-time control ap-
plications. In Proc. of the IEEE Real-Time Technology and
Application Symposium, pages 240-249, Chicago, Illinois,
USA, May 1995. IEEE.

