Hardware support for CAN fault-tolerant communication

José Rufino
ruf@digitais.ist.utl.pt
IST-UTL*

Paulo Verissimo
pjv@di.fc.ul.pt
FC/ULT

Abstract

Fault-tolerant distributed applications based on field-
buses may take advantage from the availability of highly-
dependable communication systems. In this paper, we ad-
dress this problem in the context of CAN, the Controller
Area Network, to conclude that CAN native mechanisms
alone are unable to fulfill all the attributes of fault-tolerant
communication protocols. The paper discusses how exist-
ing CAN controllers can be complemented with some sim-
ple machinery and low-level protocol modules, handling
the problem effectively. The result is an enhanced CAN
infra-structure able to extremely reliable communication.

1 Introduction

The design and implementation of distributed com-
puter control systems intended for real-world interfac-
ing, i.e. integrating sensors and/or actuators, have in-
creasingly been based on standard field-buses. The de-
velopment of applications for such environments may
greatly benefit from the availability of reliable com-
munication services, such as those provided by group
communication, membership and failure detection.

However, the migration of fault-tolerant commu-
nication systems to the realm of field-buses presents
non-negligible problems, some of them addressed re-
cently [10], in the context of CAN, a field-bus that has
assumed increasing importance and widespread accep-
tance in application areas as diverse as shop-floor con-
trol, robotics or automotive.

A current belief considers that the CAN protocol
guarantees a totally ordered message delivery either
to all nodes or to none (atomic broadcast). However,

*Instituto Superior Técnico - Universidade Técnica de Lis-
boa , Avenida Rovisco Pais - 1096 Lisboa Codex - Portugal. Tel:
+351-1-8418397/99 - Fax: +351-1-8417499. NavIST Group
CAN Page - http://pandora.ist.utl.pt/CAN.

tFaculdade de Ciéncias da Universidade de Lisboa.

Nuno Pedrosa
nffp@dione.ist.utl.pt
IST-UTL

José Monteiro
jetm@dione.ist.utl.pt
IST-UTL

Guilherme Arroz

pcegsa@alfa.ist.utl.pt

IST-UTL

this assumption does not hold, at least in systems with
high reliability requirements [10]. In such cases, fault-
tolerant communication services must be supported by
a protocol layer built on top of CAN.

In this paper it is investigated how some simple ma-
chinery, in addition to a classic CAN controller chip,
can be used to efficiently support some of those pro-
tocol functions, thus providing a CAN infra-structure
with enhanced dependability characteristics.

2 Controller Area Network

The Controller Area Network is a multi-master bus
using a twisted pair cable as transmission medium [5].
Bus signaling takes one out of two values: recessive,
otherwise the state of an idle bus; dominant, which
always overwrites a recessive value. This behavior,
together with the uniqueness of frame identifiers, is
exploited for bus arbitration.

A carrier sense multi-access with deterministic col-
lision resolution policy is used: while transmitting the
frame identifier each node monitors the bus; if the
transmitted bit is recessive and a dominant value is
monitored, the node gives up transmitting and starts
to receive incoming data; the node transmitting the
frame with the lowest identifier goes through and gets
the bus. Frames that have lost arbitration are auto-
matically retransmitted.

A frameis a piece of encapsulated information that
travels on the network. It may contain a message': in
CAN, a data frame is used for that purpose. However,
it may consist of heading/trailing fields only, such as
a remote frame, which has no data field.

The following discussion assumes the reader to be
fairly familiar with CAN operation [5].

LA message is a user-level piece of information.

bt 11bit 1bit 1bit 18bit Tbit 1bit 1bit_4bit 0-64bit 150t 1bit 1bit 1bit 7bit
Base Identifier . CRC |CRC|ACK [ACK
lSOF P SHR‘IDE (entifier RTR‘ m1|ro|DLC | DataField |gqquence| el | Siot | Del | EOF ‘
(d) (GG (@) (@ g T [G] ® (r.n
only exists in CAN 2.0B
|—— Ambitration Fied ———} Centrel CRG Field —-ACKField|-

SOF - Start of Frame
SRR - Substitute Remote Request

rvX - reserved
DLC - Data Length Code
IDE - Identifier Extension Indicator

RTR - Remote Transmission Request| (f) - recessive (d) - dominant

ICRC - Cyclic Redundancy Code
/ACK - Acknowledgment

Del - Delimiter

EOF - End Of Frame

Figure 1: CAN frame structure

Impairments to dependability: the comprehen-
sive set of CAN fault-confinement and error detection
mechanisms ensures that most failures are perceived
consistently by all nodes [2, 9]. Unfortunately, some
subtle errors can lead to inconsistency and induce the
failure of dependable communication protocols based
on CAN operation alone. A thorough discussion of
these problems can be found in [10].

One relevant aspect of that discussion concerns an
important weakness of CAN error handling: in order
to preserve consistency of frame dissemination, any
recipient detecting an incorrect dominant value at the
last bit of a frame? (x set in Figure 2-A) is obliged
to accept the frame, because the sender may not have
detected the error.

EOF A

[Recipients - @ set}— [r[r [T [J—— noeror- @ set accepts the frame

[Sender o188 O
no retransmission is due

no error {error flag seen as overload condition

T

[Recipients - x set}—Tr [r[d)|__erorflag J—— x set obliged to accept despite format violation

EOF O set obliged to accept B
[Recipients - @ set}— [r[[df © set has the frame

sender detects the error ¢

}—' [[r[] erorflag }——

r —s= d transition

[Recipients - x set}—Tr [d e.rrorﬂag [
% setrejects the frame

at this point

[Sender sender schedules retransmission

X set has not the frame

Figure 2: Inconsistency in CAN error handling

This opens room for inconsistent frame omissions,
a problem that occurs if a disturbance corrupts the
last but one bit of a frame in the recipients tagged
x set in Figure 2-B: all recipients in this set® reject the
frame while those in the e set must accept the frame;
after error signaling, the sender schedules the frame
for retransmission. Once the frame is retransmitted,
an exact duplicate of the message will be accepted by
the recipients in the e set of Figure 2-B. The problem
gets worse if the sender fails before retransmission,
which leads to an inconsistent message omission.

However infrequent it may be, the probability of oc-
currence of these scenarios is high enough to be taken
into account, at least for highly fault-tolerant applica-
tions of CAN [10].

2Examples of causes for inconsistent detection are: electro-
magnetic interference or deficient receiver circuitry.
3The set may have only one element.

3 Fault-tolerant Communication

A software-based protocol suite intended to cope
with inconsistent omission failures was presented in
[10]. The occurrence of inconsistent omissions is for-
malized by the set of properties in Figure 3.

CAN1 - Best-effort Agreement: if a message is delivered
to a correct node, then the message is eventually delivered to
all correct nodes, if the sender remains correct.

CAN2 - Weak Integrity: any message delivered to a cor-
rect node is delivered at least once.

CANS3 - Bounded Inconsistent Omission Degree: in a
known time interval T).4, inconsistent omission failures may
occur in at most 7 transmissions.

Figure 3: Inconsistency-related CAN properties

The comparison of these properties with the rele-
vant attributes of an atomic broadcast definition [3],
clearly shows why the CAN protocol alone does not
ensure an atomic broadcast service:

AB1 - Agreement: if a message is delivered to a correct node,

then the message is eventually delivered to all correct
nodes.

AB2 - Integrity: any message delivered to a correct node is
delivered at most once.

Fault-tolerant broadcast protocols must then trans-
form CAN1 and CAN2 into AB respective properties.
In this paper, we address a hardware assisted solution,
based on low-level dependability mechanisms, built on
top of the CAN controller interface (Figure 4).

High layer protocols
sdcan i‘req T.cnf T,md ¢.req T.cnf T.ind edcan

’ SDCAN protocol EDCAN protocol

. l.req t.cnf t,md l,req t.cnf t.ind Y

can-data /can-rtr can-data /can-rtr _can-abort

layer
CAN controller

(controller interface)
CAN Communication Channel

req - service request
l-retl .cnf - confirm service execution
ind - service indication

Figure 4: Low-level message diffusion protocols

The utilization of CAN 2.0B is assumed: the iden-
tifier fields are used to carry protocol control informa-
tion, leaving the data field free to hold pure data. The
grey shadowed area in Figure 5, signals the fields with
greater relevance for low-level protocols.

CRC |CRC[ACK|ACK
Sequence| Del | Siot | Del

CAN 2.0B frame format

mid<type,s,sn,QoS>
type<c,u>
p - protocol (EDCAN/SDCAN)
r - rank (high/low)

Identifier
Extension

T

no [DLC [Data Field

RTR EOF ‘

Base
ISOFIIdenNier ISRR[IDE

IplrlclulA-Field |ﬁdgga{|§ |sn|QoSI G-Field

1111 6 6 2 3 8 1
L urgency (high/low) L Quality of Service
class (control/data) source sequence number

Figure 5: Protocol control information

The SDCAN protocol (Figure 6) is intended to en-
hance CAN2 when no message ordering® is required.
AB2 is guaranteed, by delivering the first copy of a
message and discarding further duplicates. This pro-
cedure cannot be followed when messages need to be
delivered accordingly with the order of the last re-
transmission (the successful one). In this case, all mes-
sage copies are delivered to the higher layer, that will
guarantee integrity, together with message ordering.

CAN Simple-Diffusion protocol

Sender

500 when sdcan.req(mid(type(c,u),s,sn,QoS), mess) invoked at s do
501 if mess = NULL then can-rtr.req(rank(HIGH), mid);

502 else can-data.req(rank(HIGH), mid, mess); od;

503 when can-rtr.cnf(mid) or can-data.cnf(mid, mess) confirmed do
504 sdcan.cnf (mid,mess); od;

Recipient

r00 when can-data.ind(mid, mess) received at ¢
r01 or can-rtr.ind(mid, mess=NULL) received at ¢ do
r02 Ircvnew(mid); // auxiliary function

r03 if Ircvr_dup[mid(type(u),s)] = 1 then // new message

r04 sdcan.ind (mid, mess);

r05 elif integrity(mid(QoS)) = WEAK then

r06 sdcan.ind (mid, mess); od; // deliver all message copies

Figure 6: Specification of the SDCAN protocol

For each source node and urgency level, recipients
locally maintain a record of relevant information, con-
cerning the message with the “highest” sequence num-
ber, issued by that source (Figure 7). Each time a
message is received, that record is updated, which al-
lows to distinguish a new message from a duplicate.

3bit 2bit 2bit _ 1bit Err e T
last" received message recor
_n (kept for different urgency levels and source nodes)
reserved
E:Je'?gﬁ%e sequence number (Ircvr_sn)
. number of (Ircvr_dup)

Ircv_new(mid(type(c,u),s,sn,QoS)) (auxiliary function)
a00 old_mid := Ircv_mid_get(mid(type(u),s));
a01 if mid{sn) > Ircvrsn[mid(type(u),s)] then // new message

a02 Ircvr_sn[mid(type(u),s)] := mid(sn);

a03 Ircvr_dup[mid(type(u),s)] := 1;

a04 Ircvamid new(mid);

a05 else // message duplicate

a06 Ircvr_dup[mid(type(u),s)] := Ircvr_dup[mid(type{u},s)] + 1;
a07 return old_mid;

Figure 7: Keeping message transaction information

The EDCAN protocol (Figure 8) is intended to en-
hance both integrity (CAN2) and agreement (CANT)
properties. ABI1 is guaranteed by making recipients
responsible for message retransmission. Retransmis-
sions may stop once the number of duplicates exceeds
the inconsistency degree bound (CAN3). Ordering of
message delivery is not ensured.

4Implicitly defined by the QoS (Quality of Service).

CAN Eager-Diffusion protocol

Sender
500 when edcan.req(mid(type{c,u),s,sn,QoS), mess) invoked at s do
501 if mid(sn) > Ircvr_snfmid(type(u),s)] then

502 if mess = NULL then can-rtr.req(rank(LOW), mid);
503 else can-data.req(rank(LOW), mid, mess); od;

504 when can-rtr.cnf(mid) or can-data.cnf(mid, mess) confirmed do
505 edcan.cnf (mid,mess); od;

Recipient

r00 when can-data.ind(mid, mess) received at ¢

r01 or can-rtr.ind(mid, mess=NULL) received at ¢ do

r02 old_mid := Ircv_new(mid); // auxiliary function
r03 if Ircvr_dup[mid(type(u},s)] = 1 then // new message

r04 can-abort.req(old_mid);

r05 edcan.ind (mid, mess);

r06 if mess = NULL then can-rtr.req(rank(HIGH), mid);

r07 else can-data.req(rank{HIGH), mid, mess);

r08 elif Ircvr_dup[mid(type(u),s)] > j then can-abort.req(mid); od;

Figure 8: Specification of the EDCAN protocol

In addition, it has to be guaranteed that no overrun
incidents will ever occur in the management of CAN
controller receive buffers, because this kind of omis-
sion failures will jeopardize the whole CAN protocol
reliability guarantees.

4 CAN Dependability Engine

The short number of buffers available for the stor-
age of incoming messages, in current CAN controllers,
imposes the need of an appropriate hardware support
in order to avoid overrun incidents. To cope with this
problem we have devised a specialized hardware infra-
structure, in complement to the CAN controller chip.

Since that circuitry is based on a micro-controller,
other CAN dependability enforcement mechanisms,
like those described in section 3, can be added with
a little extra cost, provided that the overall system
timeliness and storage requirements complies with ex-
isting speed and memory restrictions.

Dubbed CANDLE (CAN DependabiLity Engine),
this component exhibits a modular architecture, in the
sense that it makes no assumptions about upper and
lower interfacing technologies. The CANDLE archi-
tecture, represented in Figure 9, is described next.

System interface - this unit comprises two differ-
ent channels, implemented through FIFO® dual-port
memories. To preserve latency, service requests are
queued one at a time, on the input channel. Con-
versely, the confirm of service requests and service in-
dications are queued, on the output channel, as soon
as they become available. The output channel FIFO
should be made as deep as required to support traffic
bursts under the worst-case system latency.

5First-In First-Out.

CAN controller - in order to cope with different
service request urgency levels and to efficiently support
frame retransmissions by the EDCAN protocol, it is
recommended to have a CAN controller with object
storage®. The Intel 82527 controller was selected [4].
From the 15 message buffers available:

e one is exclusively dedicated to receive incoming traffic;

e two buffers, in a total of four, are assigned to SDCAN for
transmission of control/data messages, at each urgency
level;

o the EDCAN protocol may use the remaining buffers.

In order to prevent priority inversion [7], upon mes-
sage retransmission, the EDCAN protocol should take
into account that the 82527 internally uses buffer i-
dentifiers rather than message identifiers to schedule
multiple on-chip requests.

System Interface

O o
From: To:
Input Channel Output Channel
Execution Environment (e.g. 7200 FIFO) (e.g. 7204 FIFO)
8 Kb EPROM 7 @ ﬂ N
PIC16C67 { 368 bytes RAM N v
16bit Prog. Timer ﬁ

CAN controller
CANDLE Module Intel 82527

Tx Rx

[SE)
Physical Layer Interface

Figure 9: CAN Dependability Engine

Execution environment - entirely responsible for
the command of the CAN controller, including mes-
sage buffer management. Furthermore, it must sup-
port the execution of message diffusion protocols.

The PIC16C67 [6], a low-cost, high-performance,
8-bit micro-controller has been used in the design of
the execution unit. Based on a RISC-architecture, the
PIC16C67 can achieve a 200ns instruction cycle.

This is a fundamental factor to guarantee execution
of all competing threads (receive, transmit and layer
management) within the period corresponding to the
minimum frame inter-arrival time. Additionally, this
unit can be made responsible for multicast traffic fil-
tering and message timestamping.

Physical layer interface - the physical layer cir-
cuitry is intentionally not included in the CANDLE
architecture, in order to allow multiple design solu-
tions. For example: classical wiring, low-cost fiber
optics or the dual-media solution described in [8] for
resilience against network partitions.

8Formerly called FullCAN.

5 Related Work

Commercially available circuits implement in sili-
con the standard CAN protocol. Different proposals
to improve CAN operation [1, 11] require the modifi-
cation of those chips. Our approach allows to enhance
CAN dependability, using existing CAN controllers.

6 Conclusions

There is a need for fault-tolerant communicationsin
distributed control systems based on field-buses. We
have analyzed this problem, in the context of CAN.
Dismissing the misconception that CAN native mech-
anisms support an atomic broadcast service we have
looked for systemic solutions. The CANDLE architec-
ture uses some simple machinery and low-level proto-
col entities, to complement the bare CAN operation,
thus yielding an interface with enhanced dependability
characteristics.

Acknowledgments - the authors wish to thank L. Rodrigues
and C. Almeida for their valuable suggestions.

References
[1] G. Cena and A. Valenzano. An improved CAN fieldbus for

industrial applications. IEEE Transactions on Industrial
Electronics, 44(4):553-564, August 1997.

[2] J. Charzinski. Performance of the error detection mech-
anisms in CAN. In Proceedings of the 1st International
CAN Conference, Mainz, Germany, September 1994. CiA.

[3] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S.J. Mullender, editor, Distributed
Systems, ACM-Press, chapter 5, pages 97-145. Addison-
Wesley, 2nd edition, 1993.

[4] Intel. 82527 - Serial Communications CAN Protocol Con-
troller, December 1995.

[5] ISO. International Standard 11898 - Road vehicles - In-
terchange of digital information - Controller Area Network
(CAN) for high-speed communication, November 1993.

[6] Microchip Technology Inc., USA. PIC 16C6X: 8-bit CMOS
Microcontrollers, 1997.

[7] J. Peden and A. Weaver. Performance of priorities on an
802.5 token ring. In Proceedings SIGCOM’87 Symposium,
Stowe, VT, August 1987. ACM.

[8] J. Rufino. Dual-media redundancy mechanisms for
CAN. Technical Report CTI RT-97-01, Instituto Superior
Técnico, Lisboa, Portugal, January 1997.

[9] J. Rufino and P. Verissimo. A study on the inaccessibility

characteristics of the Controller Area Network. In Proceed-
ings of the 2nd International CAN Conference, London,

England, October 1995. CiA.

[10] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcasts in CAN. Technical Re-
port CTI RT-97-04, Instituto Superior Técnico, Lisboa,
Portugal, December 1997. (submitted for publication).

[11] K. Tindell and H. Hansson. Babbling idiots, the dual-
priority protocol and smart CAN controllers. In Proceed-
ings of the 2nd International CAN Conference, London,
England, October 1995. CiA.

