Fault-Tolerant Broadcasts in CAN

José Rufino
ruf@digitais.ist.utl.pt

IST-UTL*

Carlos Almeida
cra@digitais.ist.utl.pt

IST-UTL

Abstract

Fault-tolerant distributed systems based on field-
buses may take advantage from reliable and atomic
broadcast. There is a current belief that CAN na-
tive mechanisms provide atomic broadcast. In this
paper, we dismiss this misconception, explaining how
network errors may lead to: inconsistent message de-
livery; generation of message duplicates. These errors
may occur when faults hit the last two bits of the end
of frame delimiter. Although rare, its influence cannot
be ignored, for highly fault-tolerant systems. Finally,
we give a protocol suite that handles the problem ef-
fectively.

1 Introduction

Fault-tolerant distributed systems are nowadays a
mature technology, used in a variety of applications
and settings, from information repositories to comput-
er control. The latter field is an extremely challenging
one, since it must normally combine distribution and
fault-tolerance with real-time, and given the decen-
tralized nature of many of its problems, it is a natu-
ral application for distributed systems. Furthermore,
distributed computer control systems have increasing-
ly been based on field-bus networks. While there is a
reasonable body of research on LAN-based distributed
fault-tolerant systems, we have not seen a great deal
of such systems based on standard field-buses, such as
Profibus, FIP or CAN.

One reason may be because the efficient imple-
mentation of distributed fault-tolerance techniques re-
lies on well-known paradigms like state machines and
replication management protocols, and these are hard
to implement in the simple field-bus environment.
Given the multi-participant nature of the interactions

*Instituto Superior Técnico - Universidade Técnica de Lisboa, Avenida Ro-
visco Pais - 1096 Lisboa Codex - Portugal. Tel: 4351-1-8418397 - Fax: +351-
1-8417499. NavIST Group CAN WWW Page - http://pandora.ist.utl.pt/CAN.

!Faculdade de Ciéncias da Universidade de Lisboa, Portugal. Navigators
Home Page: http://www.navigators.di.fc.ul.pt.

Paulo Verissimo Guilherme Arroz
pjv@di.fc.ul.pt

FC/UL!

pcegsa@alfa.ist.utl.pt

IST-UTL

Luis Rodrigues
ler@di.fc.ul.pt

FC/UL

between replicated entities, the system may benefit to
a great extent from the availability of reliable com-
munication services, such as those provided by group
communication, membership and failure detection. In
fact, these services may be extremely relevant for the
design of distributed computer control systems, based
on field-buses: not only do they give replicas a unifor-
m treatment, but they easily handle constructs specif-
ically intended for real-world interfacing, such as func-
tional groups of sensors and/or actuators.

However, the migration of fault-tolerant commu-
nication systems to the realm of field-buses presents
non-negligible problems, that we address in this paper,
in the context of CAN, the Controller Area Network.
CAN is a multi-master field-bus that has assumed
increasing importance and widespread acceptance in
control application areas as diverse as shop-floor or
automotive.

Perhaps influenced by a certain lack of accuracy in
the standard CAN documentation, there have been
published works that assume CAN supports a (totally
ordered) atomic broadcast service [12, 13]. The cover-
age of this assumption is only acceptable under mod-
est requirements on system reliability, and would lead
to the implementation of fault-tolerant systems that
would function incorrectly, with unpredictable conse-
quences for the controlled systems.

In this paper, we start by dismissing that miscon-
ception, explaining how network errors may lead to:
inconsistent data frame transfers; generation of data
frame duplicates. Given their probability of occur-
rence, that we also estimate, the influence of those er-
rors cannot be ignored, for fault-tolerant systems and
applications.

Secondly, since the need remains for fault-tolerant
group communication on field-buses, we address the
problem in a comprehensive way, reasoning about the
reliability of CAN communications and their weak-

nesses, integrating CAN own properties into a sys-
temic model and showing how a fault-tolerant broad-
cast primitive can be efficiently supported by a simple
software layer built on top of an exposed CAN con-
troller interface.

The following discussion assumes the reader to be
fairly familiar with CAN operation. In any case, we
forward the reader to the relevant standard documents

[7, 15], for details about the CAN protocol.

2 Controller Area Network

The Controller Area Network (CAN) is a bus with
a multi-master architecture [7, 15]. The transmission
medium is usually a twisted pair cable and the network
maximum length depends on the data rate. Typical
values are: 40m @ 1 Mbps; 1000m @ 50 kbps. Bus sig-
naling takes one out of two values: recessive, otherwise
the state of an idle bus, occurs when all competing n-
odes send recessive bits; dominant, which only needs
to be sent by one node to stand on the bus. This be-
havior comes from the wired-and nature of the CAN
physical layer.

Bit-Stuffing and CRC Coverage

{End of Frame Sequen |

1bit 11bit 1bit 1bit 18bit 1bit 1bit 1bit 4bit 0-64bit 15bit 1bit 1bit 1bit 7bit
Base Identifier) CRC |CRC[ACK]ACK
lSOF Identifier SHR[IDE Extonsion |FTF|"V1|v0[DLC| DataField |sequence| Del | Siot | Del EOF
(d) ") (d) P ——— (5] (G
only exists in CAN 2.0B remote frames . .
R, Control CRC Field | ACKField
| Arbitration Field ~ ————f— Contfo + —+ +

SOF - Start of Frame
SRR - Substitute Remote Request

X - reserved CRC - Cyclic Redundancy Code
DLC - Data Length Code ACK Slot - Acknowledgment Slot

IDE - Identifier Extension Indicator - Sﬁt to (rc)i l‘)y (tg!)ebsendeﬂ "

B i r) - recessive (d) - dominant - changed to y recipients in
RTR - Remote Transmission Request| (") (d) e s of ST CRG erors.
(d) -data frame (r) -remote frame Del - Delimiter

EOF - End Of Frame

Figure 1: CAN frame structure

Frame identifiers are unique, and this feature, to-
gether with the wired-and behavior, is exploited to re-
solve conflicts in the access to the shared bus, whose
access policy is carrier sense multi-access with de-
terministic collision resolution (CSMA /DCR) scheme:
several nodes may jump on the bus at the same time,
but while transmitting the frame identifier each node
monitors the bus; for every bit, if the transmitted bit is
recessive and a dominant value is monitored, the node
gives up transmitting and starts to receive incoming
data; the node transmitting the frame with the lowest
identifier goes through and gets the bus. Automatic
scheduling of a frame for retransmission is provided
after a loss in an arbitration process.

The terminology we will use is explained below. A
message is a user-level piece of information. A frame
is a piece of encapsulated information that travels on
the network. It may contain a message: in CAN, a
data frame is used for that purpose. However, it may
consist of control information only, such as a remote

frame, which may be used in CAN to request the trans-
mission of a data frame from one or more remote n-
odes. We will use remote frames in support of our
protocols, as will be explained in Section 4.

Some details about CAN operation: the same i-
dentifier is used for data and remote frames, the dis-
tinction being made through the remote transmission
request (RTR) bit (Figure 1); no data field is included
in a remote frame; several nodes may simultaneously
transmit the same remote frame!. Finally, we assume
the utilization of the CAN 2.0B extended format: the
identifier extension (Figure 1) is used to carry proto-
col control information, leaving the data field free to
hold pure data.

2.1 Impairments to dependability

Let us now discuss the impairments of the CAN
protocol [7, 15] with regard the provision of highly-
dependable communication services. Those include
shortcomings in fault-confinement and error detec-
tion/signaling mechanisms. CAN has a comprehensive
set of such mechanisms, that make it very resilient.
Due to lack of space, we do not discuss all of them,
but the interested reader is referred to [7, 15, 2, 20]
for details. Most failures are handled consistently by
all nodes.

However, we have identified failure scenarios that
can lead to undesirable symptoms such as inconsisten-
t omission failures and duplicate message reception.
These scenarios occur when faults hit the last two bits
of the seven-bit end of frame delimiter (see Figure 1).
However infrequent it may be, we also show ahead that
the probability of occurrence of this scenario is high
enough to be taken into account, at least for high-
ly fault-tolerant applications of CAN. In fact, a naive
atomic multicast protocol based on CAN properties
alone, would fail under such a scenario. So, in this
section we start by discussing the fault confinemen-
t mechanisms, then we discuss inconsistent failures,
and finally equate the probability of such failures oc-
curring.

Fault confinement aims at restricting the influence
of defective nodes in bus operation. It is based on
two different counters recording, at each node, trans-
mit and receive errors, that is, omission errors caus-
ing frames not to be received at their destinations.
A fully-integrated node is in the error-active state,
the normal operating condition, where it is able to
transmit /receive frames and fully participates in er-

!Provided that the DLC field (Figure 1) is equal for all nodes.
Otherwise, an un-resolvable collision would prevail. The CAN
specification allows any value within the admissible range [0, 8],
to be used in the DLC field of remote frames.

ror detection/signaling actions. In the presence of
errors, the error counters are updated, according to
rules [7, 15] that make faulty nodes experience, with
a very high probability, the highest error counter in-
crease. When any error counter exceeds 127, the node
enters an error-passive state where it is still able to
transmit and receive frames, but after transmitting a
data or remote frame is obliged to an extra eight-bit
wait period, before it is allowed to start a new trans-
mission. Furthermore, an error-passive node can only
signal errors while transmitting. After behaving well
again for a certain time, a node is allowed to re-assume
the error-active status.

The erratic behavior of error-passive nodes repre-
sents a source of inconsistency that cannot go uncon-
trolled. A possible solution is that prior to a node
reaching the error-passive state, it will have given a
pre-specified number of omission errors, after which it
will be shut-down, by forcing it to enter what is called
the bus-off state. Most of existing CAN controllers
(e.g. [6]) are able to issue a warning signal, to be used
for that purpose, if any error counter exceeds a given
threshold [15]. A node in the bus-off state does not
participate in any bus activity, being unable to send
or receive frames.

In consequence, the first problem, concerning the
control of omission failures, is easily solvable, but the
failure assumptions must be quantified and the pro-
tocols must take those assumptions into account (see
Section 3 ahead). In absence of failures other than
consistent omissions and node failures, the CAN pro-
tocol would assure what is called atomic multicast: a
totally ordered message delivery either to all nodes
or to none. For example, amongst the several error
recovery mechanisms, the sender automatically sub-
mits the same message for retransmission, upon the
occurrence of an error. Unfortunately, inconsistency
scenarios may occur, that we discuss next.

If the sender detects no error up to the last bit of
the end of frame delimiter, it considers that transmis-
sion as successful and no retransmission is due. How-
ever, should a subset of recipients?, tagged x set in
Figure 2-A, detect an incorrect dominant value in the
last bit of the end of frame delimiter3, the protocol
specifies that they must accept the frame in order to
preserve consistency with the complementary set of
recipients, tagged e set in Figure 2-A, where a correct
recessive value was detected.

This opens room for inconsistent frame omissions,

2This subset may have only one element.
3Examples of causes for inconsistent detection are: electro-
magnetic interference or deficient receiver circuitry.

EOF
[Recipients - @ set}—Tr [}

o error (error flag seen as overload condition)

[Sender T [0 }
[Recipients - x set}—Tr [r [a}_overload flag_}

! X set obliged fo accept (despite format violation) A

EOF @ set obliged to accept
[Recipients - @ set|— [r[r [df overoadflag ——————— []] © set receives a frame duplicate
sender detects the error-schedules retransmission gop

; . if successful

[Sender }—T1]] J_erorfg T TT% aiinogesreceive the frame
>

[Recipients - X set}—[r[d] erorflag | ———— [[[*

: X set rejects the frame N B

EOF @ set obliged to accept

[Recipients -_@ set}—" r[r [dJ_overloadflag }———————————— @ set has the frame

sender detects the error-schedules retransmission

— T[] _J[_eworfiag %1- sender fails before retransmission

r->d transition

[Recipients - x set}—Tr [d] _error flag [X sethas notthe frame C

X set rejects the frame

[_Sender

Figure 2: Inconsistency in CAN error handling

that occur in the following case: a disturbance cor-
rupts the last but one bit of the end of frame delimiter
in the x set of recipients (Figure 2-B); signaling of the
error begins at the bit following the corrupted one; no
node in the x set accepts the frame. The sender also
detects an error and schedules the frame for retrans-
mission, after having performed its own error signaling
actions. On the other hand, as explained in the previ-
ous paragraph, the recipients in the o set must accept
the frame because the error is only signaled in the last
bit of the end of frame delimiter.

At this point, we have a problem: an exact du-
plicate of the message will be accepted by the recipi-
ents in the e set of Figure 2-B, once retransmission is
accomplished. This happens because the CAN proto-
col automatic message retransmission does not modify
any frame field.

The problem gets worse if the sender fails after the
first transmission and before the retransmission. This
last scenario is depicted in Figure 2-C, which shows
that inconsistent message omissions take place, affect-
ing only the x set.

2.2 Probability of inconsistent errors

In order to establish the importance of inconsis-
tent error scenarios we have evaluated the probabili-
ty of their occurrence. Other types of errors are not
addressed: consistent errors are correctly processed
by the CAN controllers; the residual probability of
errors undetected by built-in CAN error-detection is
negligible[2].

The results of our evaluation are summarized in
Table 1. The CAN inconsistent error probabilities are
established as a function of a fundamental communi-
cation channel parameter - the bit error rate (ber).
The model further considers an exponential distribu-
tion for node crashes (A is the failure rate) and those

Inconsistent frame omissions
Difo = (1 _ ber)Tdata—2
Node crash failures
Prait = 1 —exp™* 4

. ber

IMD - Inconsistent Message Duplicates
Pifo - (1 = prait)

IMO - Inconsistent Message Omissions

Pifo - Pfail

Table 1: Probabilities of inconsistent errors

events are regarded as independent from frame omis-
sions. The probability of having an error in a par-
ticular bit of a frame obeys a geometric distribution,
because the sender stops transmitting after the sig-
naling of the first error. In addition, it is assumed
that the probability for the same bit error being per-
ceived simultaneously by all the nodes in the system is
much lower than having it perceived only by a subset
of the nodes. Thus, in this slightly simplified model
the probability of inconsistent frame omissions only
accounts for a temporal distribution of errors, occur-
ing in the last but one bit of a frame with an overall
length of Ty4¢4 bits. Given a At period, correspond-
ing to the interval between the end of a transmission
and the end of the last retransmission, if the sender
crashes within At after the first error, with probabil-
ity (1 — exp‘A‘At), an inconsistent message omission
(TMO) occurs. Otherwise, the sender retransmits the
message, but this recovery action generates inconsis-
tent message duplicates (IMD).

Bit Error | Node failures | IMD /hour | IMO /hour
Rate (ber) | per hour (A) At = 5ms

10~* 10~° 2.84 x 10 [3.94 x 107°

10~* 2.84 x 10° [3.94 x 1077

107° 10~? 2.86 x 10% [3.98 x 1077

10~* 2.86 x 10% [3.98 x 1078

10~°¢ 10~ 2.87 x 10" [3.98 x 107

10~* 2.87 x 10" [3.98 x 10~°

Table 2: CAN inconsistent errors per hour

To finalize, we estimate the error probabilities in
failures per hour, for several scenarios, in the reference
period of one hour, for a 32 node CAN field-bus at 1

Mbps. A network overall load of 90% and an average
frame length of Tg4ts = 110 bits are assumed. Bit er-
ror rates are presented both for benign and aggressive
environments, such as noisy industries and automo-
tive. Node crash failure rates are compliant with the
values in [19, 9]. A latency of 5 ms s used as At, a time
interval roughly corresponding to the time required for
the transmission of one frame from each node in the
network. The results from this evaluation, presented
in Table 2, should be compared with the reference val-
ue of 10~° incidents per hour, the well-known safety
number from the aerospace industry [14], which is to-
day also a goal for automotive applications [8]. The
number of inconsistency incidents per hour goes down
proportionally with a decrement in the network data
rate, overall offered load or number of nodes.

3 System Model

In this section, we explain our fault assumptions,
and discuss the CAN properties that underpins our
system model.

Assumptions

We enumerate our assumptions for the system, for-
malizing the discussion made in Section 2.1. The
model addresses a set of communicating processes sit-
ting on a message passing subsystem implemented by
CAN. Each process is attached to the network through
a CAN controller. Together, they form a node. We
assume that the processes are fail-silent and blame
all temporary failures on the CAN network compo-
nents. However, when a process crashes, the whole
node crashes. In consequence, we may refer to process
and node interchangeably.

We introduce the following definition: a component
is weak-fail-silent if it behaves correctly or crashes
if it does more than a given number of omission fail-
ures in an interval of reference, called the component’s
omission degree. This assumption can be enforced by
the error confinement mechanisms discussed in Sec-
tion 2.1, and is important to parameterize our proto-
cols.

The CAN bus is a single-channel broadcast local
network with the following failure semantics for the
network components (anything between two processes,
including network adapters and medium):

e individual components are weak-fail-silent with
omission degree f,;

e failure bursts never affect more than f, transmis-
sions in an interval of reference *;

4For instance the duration of a broadcast round. Note that
this assumption is concerned with the total number of failures
of possibly different components.

o omission failures may be inconsistent (i.e., not ob-
served by all recipients);

e there is no permanent failure of shared network
components (e.g. medium partition).

CAN MAC-level properties

We can look at CAN as having a basic medium ac-
cess control (MAC) sub-layer, that behaves basically
like a LAN MAC sub-layer— as do most other field-
buses— and as such, exhibits the same kind of prop-
erties that have been identified in previous works on
LANs. See for example [18] for a description of ab-
stract properties of a LAN. Figure 3 enumerates the
set of MAC-level CAN properties relevant for this pa-
per. MCAN4 maps the failure semantics introduced
earlier onto the operational assumptions of CAN, be-

ing k> f,.

MCAN1 - Broadcast: correct nodes receiving an
uncorrupted frame transmission, receive the same
frame.

MCAN2 - Error Detection: correct nodes detect
any corruption done by the network in a locally re-
ceived frame.

MCANS3 - Network Order: any two frames re-
ceived at any two correct nodes, are received in the
same order at both nodes.

MCAN4 - Bounded Omission Degree: in a
known time interval T4, omission failures may occur
in at most £ transmissions.

Figure 3: CAN MAC-level properties

CAN LLC-level properties

However, CAN has error-recovery mechanisms on
top of this basic functionality, that yield interesting
message properties. Again, this has the flavor of the
logical link control (LLC) sub-layer in LANs. Such
properties have substantiated the claim that CAN ex-
hibits atomic broadcast capability. Let us start by
analyzing the definition of such a broadcast, in order
that we may understand why this is not so under all
circumstances. We use an adaptation of the definition
of atomic broadcast used by several authors [4, 16]:

AB1 - Validity: if a correct node broadcasts a mes-
sage, then the message is eventually delivered to a
correct node.

AB2 - Agreement: if a message is delivered to a
correct node, then the message is eventually deliv-
ered to all correct nodes.

AB3 - At-most-once Delivery: any message de-
livered to a correct node is delivered at most once.

AB4 - Non-triviality: any message delivered to a
correct node was broadcast by a node.

ABS5 - Total Order: any two messages delivered to

any two correct nodes, are delivered in the same
order to both nodes.

However, the failure modes that we have identified
cause the message-level properties of CAN to be some-
what different. Namely, while the omission failures
specified by MCAN4 are masked in general at the LLC
level by the retry mechanism of CAN, the existence of
inconsistent omissions as discussed in Section 2.1 pos-
tulates two things:

e that there may be message duplicates when they
are recovered;

e that some j of the k& omissions will show at the
LLC interface as inconsistent omissions.

LCAN1 - Validity: if a correct node broadcasts a
message, then the message is eventually delivered to
a correct node.

LCAN2 - Best-effort Agreement: if a message
is delivered to a correct node, then the message is
eventually delivered to all correct nodes, if the sender
remains correct.

LCANS3 - At-least-once Delivery: any message
delivered to a correct node is delivered at least once.

LCAN4 - Non-triviality: any message delivered
to a correct node was broadcast by a node.

LCANS5 - Total Order: not ensured.

LCANG6 - Bounded Inconsistent Omission De-
gree: in a known time interval 7,4, inconsistent omis-
sion failures may occur in at most j transmissions.

Figure 4: Basic CAN LLC-level properties

Figure 4 enumerates the LLC-level properties of
CAN. LCANG specifies the probability of inconsistent
omission failures j, where j is normally several orders
of magnitude smaller than k (cf.§2.1). The other five
properties explain why CAN does not ensure atom-
ic broadcast alone. LCAN1 and LCAN4 are in con-
formity with the AB specification. However, LCAN2
is conditioned to the sender not failing, and LCAN3
postulates that a message can be delivered in dupli-
cate. LCANb is not even ensured. This clearly violates

the atomic broadcast specification. In fact, it does
not even guarantee reliable broadcast, since a reliable
broadcast specification is equivalent to properties AB1
to AB4.

In consequence, the objective of the paper is to de-
vise a set of mechanisms to be inserted between the
exposed interface provided by the CAN layer and the
user processes, in order to transform the LCAN prop-
erties provided by the former, into the AB properties
expected by the latter. This will be addressed in the
next section.

4 Fault-Tolerant Broadcasts in CAN

We now present a set of fault-tolerant broadcast
protocols that make use of the unique CAN proper-
ties. We depart from an eager diffusion-based proto-
col, called EDCAN. This protocol exploits the prop-
erties of CAN remote frames to optimize the diffusion
of messages with an empty data field. Useful for the
dissemination of control information, EDCAN is less
efficient in disseminating messages with a non-empty
data field. So, we have improved the basic proto-
col to provide an unordered reliable broadcast primi-
tive, called RELCAN, and a totally ordered primitive,
called TOTCAN. The protocol suite, which is illus-
trated in Figure 5, executes on top of the CAN layer.
Each protocol provides a request primitive (used to
invoke the protocol), a confirm primitive (used to in-
form the sender of protocol local completion), and an
indication primitive (used to deliver the message to
the upper layer).

Upper Layers
= = I S =
~ ~
TOTCAN EDCAN RELCAN
(atomic) (reliable,eager) (reliable,lazy)

CAN Layer

Primitive Protocol

Type EDCAN | RELCAN | TOTCAN
Request edcan.req | relcan.req | totcan.req
Confirm edcan.cnf | relcan.cnf | totcan.cnf
Indication | edcan.ind | relcan.ind | totcan.ind

Figure 5: CAN fault-tolerant broadcast protocol suite

None of the protocols is based on the exchange of
acknowledgments [10, 16]: such an approach is not
an interesting solution in CAN, because it consumes
too much bandwidth (a scarce resource in CAN) and
makes no use of the built-in error detection properties.

4.1 CAN layer

The CAN layer is made from a CAN controller (e.g.
[6]) and the corresponding software driver, that in-
cludes primitives for: request the transmission (.req)
of data or control messages®, supporting arbitration
of requests by urgency level on both local and global
basis; confirm to the user a successful message trans-
mission (.cnf), guaranteeing that property LCANI is
secured; indication of a message arrival (.ind). The
semantics of each particular primitive is summarized
in Figure 6. Most of the attributes are defined in the
standard document [7] and have an appropriate sup-
port from the CAN controller. However, a few excep-
tions exist: i) local arbitration by urgency level may
require specific management actions [6]; ii) reception
of own transmissions is not assured in all controllers
[6], so low-level engineering may be required; iii) the
local execution environment must process frame ar-
rivals with a latency low enough to guarantee that no

receive buffer overrun incidents will ever occur®.

lq T¢ Td lq lq T. Td

can-data can-abort can-rtr CAN Layer
CAN controller]
CAN Communication Channel
Primitives Semantics summary
Data | Remote
can-data.req Only a node is allowed to
transmit, at a time.
can-rtr.req | Several nodes may simultane-
ously transmit the same re-
mote frame.
can-data.cnf | can-rtr.cnf | Signals the successful trans-
mission of a frame.
can-data.ind | can-rtr.ind | Signals the arrival of a frame,
including own transmissions.

Aborts a frame transmission
request. Has effect only on

pending requests.

can-abort.req

Figure 6: CAN layer structure and interface

The protocols above the CAN layer use the mes-
sage format illustrated in Figure 7. The fields rele-
vant for protocol operation include: a type reference,
the sender identifier and a sequence number. The type
reference merges urgency class and control data infor-
mation. The remaining fields only matter to communi-
cation channel access arbitration. In data frames, the
source identifier references the node actually sending
the frame; in remote (control) frames it is identical

5Control messages are encapsulated in remote frames.
6This kind of omission failures have not been included in our
model.

CRC
Del

CAN 2.0B frame format

ACK
Slot

ACK
Del

Base
lSOF Identifier

Extension "o

bLC [Data Field [

SRR[\DE dentifier RTR[r\A Seanonce] EOFI

1ot 8bit Bbit it 2bit 6bif-.

- - =3 Protocol Control Information
Scheduling | Source | Sender Control mid<type<u, cdata>, sid, sn>
Information | identifier | identifier ‘ data

(sid) (cdata)
Urgency Class (u)
- high Sequence number (sn)

- low

Figure 7: Information in CAN frame identifiers

to the sender identifier. The scheduling information
specifies message urgency, given traffic patterns, la-
tency classes and overall offered load [17, 21].

4.2 Message diffusion

The first protocol that we discuss is a diffusion-
based protocol [3, 1] with some optimizations to save
channel bandwidth. In this protocol, the recipients are
responsible for retransmitting the message. Retrans-
missions are issued as soon as the original message
is received; thus we have called this protocol “Ea-
ger Diffusion”, or simply EDCAN. If enough nodes
retransmit the message, one of these nodes will be
a non-faulty sender and CAN properties will ensure
the reliability of message delivery. The protocol is s-
ketched in Figure 8. The protocol is invoked by the
upper layer providing two parameters: a unique mes-
sage identifier and an optional data field. As discussed
in Section 4.1, the control information in the message
identifier includes a message type, source identifier,
and sequence number.

The protocol works as follows. The sender request-
s the transmission of the message to the CAN layer.
For messages with data field the can-data primitive is
used. For messages with an empty data field, remote
frames (can-rtr) are used. If the sender does not fail
the original message is delivered. To tolerate the fail-
ure of the original sender, recipients deliver the first
copy of the message and eagerly retransmit it.

For messages with a data field, retransmissions flow
on the channel one at a time. This may be too costly
in terms of network load. The bounded inconsistent
omission degree property (LCANG) is exploited to op-
timize network bandwidth consumption: as soon as a
node receives (j+41) copies of the same message it tries
to abort the corresponding send request. However:
only pending requests can be aborted (cf.§ 4.1); pro-
tocol execution delays may prevent a non-negligible
number of requests to be timely aborted. As a re-
sult, a number of transmissions greater than (j + 1)
should be expected. Although we do not advocate the
straight utilization of EDCAN to broadcast messages
with a data field, it may be useful to other protocol-
s. For example, ahead we will use EDCAN for error

Eager Diffusion-based Protocol (EDCAN)

Initialization
i01 ndup(mid) := 0; // number of duplicates, kept for each message

Sender

510 when edcan.req(mid{type,p,n), mess) invoked at p do
511 if mess = NULL then

512 can-rtr.req(mid);

513 else

s14 can-data.req(mid, mess);

s15 od;

516 when can-rtr.cnf(mid)

517 or can-data.cnf(mid, mess) confirmed do
518 deliver edcan.cnf (mid,mess);

s19 od;
Recipient

r00 when can-data.ind(mid, mess) received at ¢

r01 or can-rtr.ind(mid, mess=NULL) received at ¢ do

r02 ndup(mid) := ndup(mid) + 1;

r03 if ndup(mid)= 1 then // new message
r04 edcan.ind (mid, mess);

r05 if mess = NULL then

r06 can-rtr.req(mid); // clustered
ro7 else

r08 can-data.req(mid, mess);

r09 fi;

r10 elif ndup(mid) > j then

ri1 can-abort.req(mid);

ri2 fi;

rl3 od;

Figure 8: Eager diffusion-based protocol

recovering upon sender failure, in a reliable broadcast
protocol.

A more efficient optimization of network bandwidth
utilization can be implemented when EDCAN is re-
quested to broadcast a message with no data field. It
exploits an interesting property exhibited by remote
frames: if two or more nodes transmit simultaneous-
ly identical remote frames, these transmissions can
be “clustered” in a single physical frame, due to the
wired-and nature of the physical layer. For the same
reason, all recipients receive the original message at
approximately the same time. However, slight varia-
tions on the corresponding processing delays prevent
the different retransmission requests to be issued “ex-
actly” at the same time.

Sending <m1> (gp.optimum clustering) Sending <m1> (perfect clustering)

—
E — Forwarding <m1>
\\fomarding <mi> \>
Node 2 — —
H Forwarding <m1>
Sending <m2>
Node n —+ —

simultaneous transmissions simultaneous transmissions

Figure 9: CAN remote frame clustering

In a lightly loaded network, one may expect the
fastest node to start remote frame retransmission in
advance, as shown in Figure 9. However, for ac-
ceptably short processing delay variances, other nodes
will “cluster” their remote frame retransmissions, in a
bounded number of physical channel packets”. Con-
versely, for a heavy loaded network it is reasonable to
expect pending transmissions to have started in the
meantime. The delays in network access, introduced
by these transmissions, balance processing delays vari-
ance and thus it is reasonable to expect all retransmis-
sions following the original dissemination of a remote
frame to be clustered in a single physical layer trans-
mission. In any case, for a network with a moderate
number of nodes, this allows significant savings in net-
work bandwidth. The upper layer should use remote
frame features as much as possible, relying on con-
trol frames that do not require a data field. We will
later present an (unordered) reliable protocol and an
atomic broadcast protocol that use this approach.

4.3 Lazy message diffusion

Despite the optimization we have introduced, the
"Eager Diffusion” approach is not cost-effective for
broadcast of data messages due its high bandwidth
consumption. We now present a protocol that ex-
ploits CAN walidity (LCAN1) and best-effort agree-
ment (LCAN2) properties. The protocol, illustrated
in Figure 10, was called RELCAN as it provides an un-
ordered reliable broadcast service for data messages.
Message retransmission by the protocol is only due in
the event of sender failure.

The protocol works as follows. The sender assigns
a unique identifier to the data message based on the n-
ode unique identifier and on a local sequence number.
The control information is carried within the message
identifier (type is set to R-DATA). Then, the sender
calls an auxiliary “send-an-confirm” function, that ini-
tiates a two-phase protocol.

In the first phase, send-and-confirm requests mes-
sage transmission and awaits the corresponding con-
firmation from the CAN controller. When this confir-
mation is obtained, the sender is sure that the mes-
sage has been received by all correct recipients and
initiates the second phase, disseminating a CONFIRM
message. The reception of the CONFIRM message in-
dicates to all recipients that the associated data mes-
sage has been received and that no retransmission is
required. Recipients deliver the first copy of the mes-

"For example, in a system with a processing delay variance
lower than 64us (the duration of a 2.0B remote frame at 1
Mbps), these remaining transmissions will cluster in a single
frame.

Lazy Diffusion-based Protocol (RELCAN)
i01 relsn := 0; // local sequence number
i02 ndup(mid) := 0; // number of duplicates, kept for each message
i03 data(mid) := NULL; // data part of the message

send-and-confirm (auxiliary function)
a0l when send-and-confirm(mid(R-DATA s,n), mess) invoked at p do

a02 can-data.req(mid{R-DATA s,n), mess);

a03 od;

a04 when can-data.cnf(mid{R-DATA s,n), mess) received do
a05 can-rtr.req (mid{ CONFIRM,s,n));

a06 od;

Sender

501 when relcan.req(mess) invoked at p do

s02 relsn :=relsn + 1;

503 send-and-confirm (mid{R-DATA p,relsn), mess);
504 relcan.cnf (mess);

s05 od;

Recipient

r00 when can-data.ind(mid(R-DATA p,n), mess) received at ¢ do
r01 ndup(mid) := ndup(mid) + 1;

r02 data(mid) := mess;

r03 start alarm (mid);

r04 if ndup(mid)= 1 then // new message

r05 relcan.ind (mess);

r06 fi;

r07 od;

r08 when can-rtr.ind(mid{ CONFIRM,s,n)) received at ¢ do
r09 data(mid) := NULL;

ri0 cancel alarm(mid);

rll od;

r12 when alarm(mid) expires at ¢ do

ri3 edcan.req (mid, data(mid));

rl4 od;

r15 when edcan.ind(mid(R-DATA p,n), mess) received at ¢ do
rl6 ndup(mid) := ndup(mid) + 1;

ri7 if ndup(mid)= 1 then // new message

ri8 relcan.ind (mess);

rl9 fi;

r20 od;

Figure 10: Reliable broadcast protocol

sage and prepare themselves to retransmit the mes-
sage. However, and in opposition to the eager pro-
tocol, retransmissions are not initiated immediately.
Instead, recipients wait first for the CONFIRM mes-
sage. Only in the case the CONFIRM message is not
received, receivers retransmit the message by invoking
the EDCAN protocol.

In the best case, the RELCAN protocol sends once
the data message and once the CONFIRM control
message. In the event of sender failure, the perfor-
mance of RELCAN approaches the one observed in the
EDCAN protocol. At this stage, we have succeeded in
making properties LCAN2 and LCAN3 equivalent to
properties AB2 and AB3.

4.4 Totally ordered protocol

The previous protocol makes no effort to enforce
a total order on message delivery. In this section we
propose a new protocol, called TOTCAN, that uses

the CAN network order property (MCAN3) to provide
a totally ordered reliable broadcast service. The basic
idea of the protocol is to have the messages delivered
in the same order by which the encapsulating frames
cross the communication channel. If due to omissions,
the same message is forced to cross the channel more
than once, only the order of the last retransmission
(the successful one) is considered (previous duplicates
are discarded).

Totally Ordered Protocol (TOTCAN)

i00 tot_sn := 0; // local sequence number
i01 tot_queue := empty // queue of received messages
i02 // enqueue(tot_queue,mid,mess)
inserts the message at the end of the queue as UNSTABLE
i03 // mess := dequeue(tot_queue, mid)
removes a message from the queue
i04 // stable(tot_queue,mid) marks a message as STABLE

deliver-in-order(tot_queue) // auxiliary function
a00 deliver-in-order(tot_queue) do

a0l while message mid at the head of tot_queue is STABLE do
a02 mess = dequeue (mid);

a03 totcan.ind (mess);

a04 od;

a05 od;

Sender

510 when totcan.req(mess) invoked at p do

s11 tot_sn := tot_sn +1;

512 can-data.req(mid{ T-DATA, p, tot_sn), mess);

s13 od;

514 when can-data.req(mid{ T-DATA, p, tot_sn), mess) confirmed do
s15 edcan.req(mid{ACCEPT, p, tot_sn), NULL);

s16 od;

516 when edcan.conf(mid(ACCEPT, p, tot_sn), NULL) received do
s17 totcan.cnf(mess);

s18 od;

Recipient

r00 when can-data.ind(mid(T-DATA p,tot_sn),mess) received at ¢ do
r01 // preserve network order

r01 dequeue(tot_queue, mid);

r02 enqueue(tot_queue, mid, mess);

r03 start alarm (mid);

r04 od;

r05 when edcan.ind (mid(ACCEPT, p, tot_sn), NULL) received do
r06 stable(tot_queue, mid);

ro7 deliver-in-order (tot_queue);

r08 od;

r09 when alarm (mid) expires do

ri0 dequeue(tot_queue, mid); // discard the message
ri1 deliver-in-order (tot_queue);

ri2 od;

3

Figure 11: Totally ordered protocol

The protocol is illustrated in Figure 11. As
RELCAN, the protocol is also a two-phase protocol.
In the first phase, called the dissemination phase, the
sender tags the data message with its identification
and a sequence number. As before, control informa-
tion is carried in the identifier field (type is set to
T-DATA). Then, the sender broadcasts the message
using the bare CAN interface. When the message is

received, instead of being immediately delivered to the
application, it is held in a receive queue marked as
UNSTABLE. In the presence of inconsistent omission-
s, the same message can be received more than once.
To preserve network order, an UNSTABLE message
is moved to the tail of the queue each time a message
duplicate is received. The data message is never re-
transmitted by the recipients; should the sender fail
before the message becomes stable, it is simply dis-
carded by all recipients.

The second phase is initiated as soon as the sender
receives, from the local CAN controller, a confirmation
of success in the broadcast of the data message. At
this point, the sender can be sure that all correct recip-
ients have received the message. To make this infor-
mation available to all recipients, the sender transmits
an ACCEPT message. Because the ACCEPT mes-
sage must be reliably broadcast to all recipients, the
EDCAN protocol is used. Since the control field is able
to hold all the information required, the ACCEPT
message has no data field. When the ACCEPT is re-
ceived, the associated message is marked as STABLE
and can be delivered as soon as it reaches the head of
the queue. The use of EDCAN in the second phase
ensures that all recipients receive ACCEPT (or none
does). In the case of sender failure before it is able to
issue the ACCEPT to at least one correct destination,
deadlock is prevented by timeout. This approach is
possible due to the synchronous nature of the system.

In the best-case, TOTCAN requires the transmis-
sion of the data message plus the bandwidth cor-
responding to a pair of remote frames, required by
the EDCAN protocol, in the reliable broadcast of the
ACCEPT message. At this point, we also have secured
property LCANb (equivalent to ABb), finally reaching
our original goal of ensuring that CAN satisfies atomic
broadcast.

4.5 Bounded sequence numbers

For sake of clarity, we describe the protocols us-
ing unbounded sequence numbers. The synchronous
properties of the system allows to bound the sequence
numbers: just two bits in the CAN message identifier
are required to ensure correct protocol operation.

Due to space limitations CAN timeliness and syn-
chronism properties were not included in the system
model of Section 3. All these aspects will be addressed
in a future paper.

5 Related Work

A number of authors have studied the problem
of implementing fault-tolerant broadcasts. Some au-
thors consider an asynchronous communication mod-
el, where no known bound is explicitly placed on mes-

sage transaction delays [10]. In our system, the ex-
istence of bounded and known message transmission
delays 1s assumed, as in other synchronous communi-
cation models [1, 3, 16]. Matching the application area
of distributed control, a synchronous communication
protocol is described in [9] that integrates a compre-
hensive set of services relevant for the implementation
of fault-tolerant systems (e.g. group communication,
membership and clock synchronization).

The use of group communications is not very com-
mon, in the so-called field-bus arena where most stan-
dards rely on OSlI-like point-to-point communication-
s. One of the few exceptions is the Controller Area
Network [7, 15]. A set of CAN high layer protocols
(SDS [5], J1939, OSEK [11]) specify the use of group
communications, but lack to provide a clear defini-
tion of the corresponding system fault-model. An ac-
curate definition of the system fault-model is essen-
tial to evaluate whether or not CAN weakness with
regard fault-tolerant broadcast have been taken into
account. Perhaps mislead by some lack of accuracy
in CAN standards, some researchers neglect those as-
pects and claim that CAN supports (totally ordered)
atomic broadcasts [12, 13].

6 Conclusions

There is a growing importance of fault-tolerant dis-
tributed systems based on field-buses. Given the util-
ity of reliable and atomic broadcast for implementing
applications on those systems, we studied the relia-
bility of these protocols as provided by CAN native
mechanisms. We discovered that under infrequent but
plausible fault scenarios, CAN provides neither reli-
able nor atomic broadcast. Fault-tolerant systems us-
ing those primitives would function incorrectly, with
unpredictable consequences for the controlled systems.
In consequence, we formalized the properties actually
secured by CAN, and we gave a suite of protocols that
complement CAN’s functionality in order to achieve
reliable and atomic broadcast. As future work, we
plan on doing a thorough study of the performance of
our protocols.

References

[1] O. Babaoglu and R. Drummond. Streets of Byzantium:
Network Architectures for Fast Reliable Broadcasts. IEEE
Transactions on Software Engineering, SE-11(6), June
1985.

[2] J. Charzinski. Performance of the error detection mech-
anisms in CAN. In Proceedings of the 1st Internation-
al CAN Conference, pages 1.20-1.29, Mainz, Germany,
September 1994. CiA.

[3] F. Cristian. Synchronous atomic broadcast for redundant
broadcast channels. Technical report, IBM Almaden Re-
search Center, San Jose, California, USA, 1990.

[4] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S.J. Mullender, editor, Distributed

10]

[11]

(12]

(13]

(14]

[15]

[16]

(17]

18]

(19]

(20]

(21]

Systems, ACM-Press, chapter 5, pages 97-145. Addison-
Wesley, 2nd edition, 1993.

Honeywell Inc - MICRO SWITCH Division, Freeport, 1L,
USA. Smart Distributed System - Application Layer Pro-
tocol (version 2.0), November 1996.

Intel. 82527 - Serial Communications CAN Protocol Con-
troller, December 1995.

ISO. ISO International Standard 11898 - Road wvehi-
cles - Interchange of digital information - Controller Area
Network (CAN) for high-speed communication, November
1993.

H. Kopetz. Automotive electronics - present state and fu-
ture prospects. In Digest of Papers of the 25th Interna-
tional Symposium on Fault-Tolerant Computing Systems
- Special Issue, pages 66—75, Pasadena, California-USA,
June 1995. IEEE.

H. Kopetz and G. Grunsteidl. TTP - a protocol for fault-
tolerant real-time systems. TEEE Computer, 27(1):14-23,
January 1994.

P.M. Melliar-Smith and L.E. Moser. Fault-Tolerant Dis-
tributed Systems Based on Broadcast Communication. In
Proceedings of the 9th Internacional Conference on Dis-
tributed Computing systems, pages 129-133. IEEE, June
1989.

OSEK/VDX Working Group. OSEK/VDX Communica-
tions - Open Systems and the corresponding interfaces for
automotive electronics (version 2.0A4), October 1997.

M. Peraldi and J. Decotignie. Combining real-time features
of local area networks FIP and CAN. In Proceedings of
the 2nd International CAN Conference, pages 8.11-8.21,
London, England, October 1995. CiA.

S. Poledna. Fault tolerance in safety critical automotive
applications: Cost of agreement as a limiting factor. In
Digest of Papers of the 25th International Symposium on
Fault-Tolerant Computing Systems, pages 73—82, Pasade-
na, California-USA, June 1995. IEEE.

D. Powell. Failure mode assumptions and assumption cov-
erage. In Digest of Papers, The 22nd International Sym-
posium on Fault-Tolerant Computing Systems, pages 386—
395, Boston, Massachusetts-USA, July 1992. IEEE.

Robert Bosch GmbH. CAN Specification Version 2.0,
September 1991.

L. Rodrigues and P. Verissimo. zAMp: a Multi-primitive
Group Communications Service. In Proceedings of the 11th
Symposium on Reliable Distributed Systems, pages 112—
121, Houston, Texas, October 1992. IEEE.

K. Tindell and A. Burns. Guaranteeing message latencies
on Controler Area Network. In Proceedings of the 1st In-
ternational CAN Conference, pages 1.2-1.11, Mainz, Ger-
many, September 1994. CiA.

P. Verissimo. Real-time Communication. In S.J. Mullen-
der, editor, Distributed Systems, ACM-Press, chapter 17,
pages 447-490. Addison-Wesley, 2nd edition, 1993.

P. Verissimo and H. Kopetz. Design of distributed real-time
systems. In S.J. Mullender, editor, Distributed Systems,
ACM-Press, chapter 19, pages 511-530. Addison-Wesley,
2nd edition, 1993.

P. Verissimo, J. Rufino, and L. Ming. How hard is hard
real-time communication on field-buses? In Digest of Pa-
pers, The 27th International Symposium on Fault- Tolerant
Computing Systems, Washington - USA, June 1997. IEEE.

K. Zuberi and K. Shin. Non-preemptive scheduling of mes-
sages on Controller Area Networks for real-time control
applications. In Proceedings of the IEEE Real-Time Tech-
nology and Application Symposium, Chicago, Illinois-USA,
May 1995. IEEE.

