DDRAFT: Supporting Dynamic Distributed Real-time Applications
with Fault-Tolerance

Carlos Almeida
cra@digitais.ist.utl.pt
I[ST-UTL*

1 Introduction

With the widespread use of computers and com-
munication networks, there is a potential for the
development of a new class of distributed appli-
cations that until now were not viable, or were
only feasible in centralized environments. Some
of these applications have requirements for fault-
tolerance and real-time characteristics (e.g. dis-
tributed real-time databases associated with new
telecommunication services). Although some new
communication network technologies (e.g. AT-
M) have improved the synchronism properties
of distributed environments, these are not al-
ways fully synchronous. They are at most quasi-
synchronous [7]. Only a small part of the system
can be considered as synchronous. The rest has
a more dynamic behavior exhibiting, for a given
activity, worst-case “execution”! times that are
much higher than the normal “execution” times
(see Figure 1 for the case of message delivery
time). In this type of environment, the devel-
opment of distributed fault-tolerant real-time ap-
plications is a difficult task. There is, however, a
demand for it, and so, providing support for the
development of such applications is of utmost im-
portance. That is our goal with DDRAFT (Dy-
namic Distributed Real-time Applications with
Fault-Tolerance).

*Instituto Superior Técnico - Universidade Técnica de
Lisboa, DEEC, Av. Rovisco Pais - 1096 Lisboa Codex -
Portugal. Tel: +351-1-8418397 - Fax: +351-1-8417499.

tFaculdade de Ciéncias da Universidade de Lisboa,
Portugal.

! Transmission in the case of a network related activity.

José Rufino
ruf@digitais.ist.utl.pt
IST-UTL

Paulo Verissimo
pjv@di.fc.ul.pt
FC/ULJr

100% |

probability

T . time

‘max

Figure 1: Distribution function for message delivery time
(Tp) in a quasi-synchronous system. The worst-case is
much higher than the normal case. Assuming as maximum
a value closer to the normal case (due to practical reasons)

increases the probability of having timing failures.

The main problem with the type of environ-
ment described above, is the difficulty to have
efficiency and at the same time provide safety in
a timely fashion. Having a system whose load is
not completely controlled, or having applications
which have dynamic characteristics that make it
hard (if not impossible) to know a priori what are
the worst-case scenarios, does not allow to have a
resource adequacy policy, or at least such policy
is not cost-effective for the target applications.

Not all real-time applications are imple-
mentable in such environment. If an application
needs high assurance that all deadlines are met,
because if not there will be high costs involved
(loss of human lives or high cost components),
then a resource adequacy policy must be used.
However, some classes of real-time application-
s “can live” with occasional deadline misses, as
far as those situations are handled in a timely
and controlled way. They need safety in a timely



fashion. That is what we aim to provide with the
DDRAFT system.

The paper is organized as follows: in the nex-
t section we briefly address common approaches
to real-time, namely hard and soft real-time. In
Section 3 we present our quasi-synchronous ap-
proach. In Section 4 we present the main goals
of DDRAFT. The paper ends with some notes
about the current status and future work.

2 Hard and soft real-time

In the literature related to real-time, one can find
mainly to types of real-time systems (or two ap-
proaches) — hard real-time and soft real-time. Al-
though there is not a perfect consensus about
their definitions, a hard real-time system is said
to be one where missing a deadline means a very
high cost (loss of human lives or high cost com-
ponents), whereas in a soft real-time system it is
acceptable to miss some deadlines.

The way these two types of system are built re-
flect the goals they want to achieve. In the case of
a hard real-time system it is necessary to provide
strong guarantees about timeliness. The time do-
main must be addressed in such a way that al-
| deadlines are met. This implies the use of a
resource adequacy policy and the system must
be designed considering the worst-case scenario.
Load must be fully controlled and one must have
available all the resources needed for a worst-case
situation. This implies a high cost and usually
restricts this type of approach to small scale sys-
tems where it is feasible to have a controlled en-
vironment. System behavior must be completely
pre-defined in a static way at design time so as
to make sure that the correctness in the time do-
main is achieved. This is the type of system that
is usually used in safety critical applications such
as the control of a nuclear power plant, for ex-
ample, where there is a need for both safety and
timeliness, and deadlines must not be missed.

On the other hand, in the case of soft real-
time systems, the approach is more probabilistic.
There is usually a great concern about through-
put trying to optimize the mean values, and hav-

ing only probabilistic guarantees that no more
than a specified percentage of deadlines will be
missed. The timeliness is not completely con-
trolled. Once in a while there can be timing fail-
ures, which is supposed to be acceptable by this
type of applications. These applications can be
more dynamic, and they try to achieve a cost-
effective way of working. Timeliness is not ful-
ly granted and safety may not be fully granted.
In order to achieve safety it is sometimes neces-
sary to introduce long delays. This approach can
not be used by safety-critical applications, but it
is acceptable for some other applications such as
applications in the area of multimedia that ma-
nipulate video and audio, for example.

3 The quasi-synchronous ap-
proach

New applications requirements

With the widespread use of computers and
new communication network technologies re-
ferred above, there is however a demand for new
real-time applications with requirements that are
not well addressed by the two approaches previ-
ously presented. They cannot afford the cost of
a hard real-time approach (or due to the dynam-
ic characteristics of the application and environ-
ment it is not possible to use such approach), but
they need more guarantees than those provided
by a common soft real-time approach.
Applications such as the ones associated with
new telecommunication services that need to use
real-time databases, may have requirements that
are not fully addressed by a traditional soft real-
time approach (even if for some services this ap-
proach is enough). When there is a need for high
availability and the application is dynamic and
has both timeliness and safety requirements, one
must have some form of validation. Although a
hard real-time approach is not cost-effective, a
pure soft real-time one is not enough. It is ac-
ceptable to have some timing failures, but that
situation must be handled in a controlled and
timely fashion. Applications such as distribut-



ed real-time databases that use active replication
and where dynamic updates are done, are exam-
ples of applications with such requirements. This
type of application may be found in the area of
new telecommunications services, for example.

In order to solve the problem presented above,
it is necessary to address both the aspects relat-
ed to communications and operating system. It is
necessary to obtain an architecture and the mech-
anisms able to provide the desired guarantees in
a quasi-synchronous system.

The quasi-synchronous model

In a gquasi-synchronous system, the system can
be modeled as if it was a synchronous system, in
the sense that there are bounds on process speed,
message transmission delay and local clock rate
drift, but some or all of those bounds are not pre-
cisely known, or have values that are too far from
the normal case, that in practice one must use
other values (closer to the normal case). In both
cases it means that there is a non-null probability
that the values we pick are not correct. This is
a realistic scenario when there are situations of
overload. Better synchronism properties are re-
stricted to a small part of the system: a few high
priority activities, and a small bandwidth channel
for high priority messages.

By restricting synchronism properties to spe-
cific system modules we are able to obtain the
desired properties in a larger setting. These mod-
ules are used to validate and control the other
parts of the system thus making it possible to
achieve safety in a timely fashion. This approach
is specially useful to mission-critical applications.

4 DDRAFT main goals

With DDRAFT we aim to provide system sup-
port for the development of fault-tolerant dis-
tributed real-time applications that run on en-
vironments that are not completely synchronous.
This implies the design of a modular architecture
that tackles both the aspects related to process-
ing (CPU) and communications (Network). Us-

ing the quasi-synchronous approach we plan to
build a system where, although there is not a
complete control of load, it is possible to have
some restricted components with “good” synchro-
nism properties. These components are used to
validate the rest of the system in order to achieve
safety in a timely fashion.

DDRAFT offers a set of group communica-
tion protocols suitable for real-time in quasi-
synchronous environments. The user can choose
among several different qualities of service (QoS).
These QoS are based on basic properties, namely,
agreement, order and timeliness.

Group communication protocols and group
management are a powerful tool to support the
development of applications that require the use
of replication. By using a hierarchical structure
for those groups, it is possible to have a group
layer that allows an efficient handling of timing
failures. DDRAFT uses two layers for group man-
agement. At low level there is a basic group lay-
er (BG) corresponding to traditional group man-
agement (a participant leaves the group when it
wants, or when it crashes). On top of the ba-
sic group layer there is a layer with light weight
groups (LWG). A participant may leave the light
weight group even when the basic group is still
operational. This makes it possible to efficiently
enforce safety properties when timing failures are
detected. Keeping the basic group operational
reduces recovery time.

DDRAFT uses a timing failure detection ser-
vice (TFDS) to disseminate with timeliness guar-
antees control information that is used by the
communication protocols to validate their prop-
erties [2]. The implementation of TFDS may re-
quire the use of a specific network or a dedicated
channel in a more generic network. We are ex-
ploring several approaches. Depending on what
is available and on the existing resources for a giv-
en application one may choose the approach that
best fit in a given scenario. If an ATM network is
available, for example, TFDS can be implemented
using a channel with better guarantees than the
channels used for normal communication. In the
situation where there is only available a network



such as Ethernet, then, if the temporal granular-
ity of the application is large enough, it is still
possible to add some form of access control at an
upper level and being able to obtain the desired
properties. Another approach concerns the use
of a specific network. We are experimenting with
the use of a Controller Area Network (CAN) [5]
(this approach is specially interesting for applica-
tions in the area of automation control, for ex-
ample). This network can be used together with
a more generic network such as Ethernet. Ether-
net can be used for normal messages, and CAN
is used to implement TFDS and other services
requiring better synchronism properties such as
clock synchronization, for example. A somehow
similar configuration has been used by other re-
search groups [4]. They use a CAN network in
conjunction with a fiber optics network. CAN
is used for arbitration and data is sent via fiber
optics.

Besides the aspects related to communications,
it is also necessary to address the aspects relat-
ed to processing. In the new type of environ-
ment described above, the considerations made
about communications also apply to processing.
In this new dynamic environment there is a de-
mand to try to put together applications that are
real-time and applications non-real-time. More-
over, people want to continue to use generic op-
erating systems (that they are used to, and are
suitable for generic applications that they still
need), and at same time have applications that
have real-time requirements [6]. Although some
soft real-time applications can fit in this scenari-
o, not all of the desired applications are viable
without adding some real-time extensions to the
generic operating system (OS) used.

In DDRAFT we want to explore several ap-
proaches to these real-time extensions. From a
simple high priority component integrated in the
OS to the use of a co-processor with or without a
specific real-time OS. The main idea being similar
to what is done by TFDS in what concerns com-
munications: to have a component able to make
timely validations of what is done by the generic

OS.

5 Current status and future

work

In DDRAFT we started by addressing the aspect-
s related to communications. TFDS and some
group communication protocols are already im-
plemented [1, 2]. As the complete system is not
available yet, those protocols were validated us-
ing simulation. The results obtained so far are
encouraging [3].

We are now addressing the aspects related to
processing in order to obtain a prototype. This
will allow a more realistic type of utilization. We
plan to develop example applications to show the
potential of the DDRAFT system as a support
for the development of fault-tolerant distributed
real-time applications that run on dynamic envi-
ronments.

References

[1] Carlos Almeida and Paulo Verissimo. An adaptive real-
time group communication protocol. In Proceedings of
the First IEEE Workshop on Factory Communication
Systems, Leysin, Switzerland, October 1995.

[2] Carlos Almeida and Paulo Verfssimo. Timing failure
detection and real-time group communication in quasi-
synchronous systems. In Proceedings of the 8th Fu-
romicro Workshop on Real-Time Systems, L’ Aquila,
Italy, June 1996.

[3] Carlos Almeida and Paulo Verissimo. Timing failure
detection service: Architecture and simulation result-
s. Technical Report CTI RT-97-05, Instituto Superior
Técnico, Lisboa, Portugal, December 1997.

[4] A. Burns, N. Audsley, and A. Wellings. Real time
distributed computing. In Proc. of the 5th Workshop
on Future Trends of Distributed Computing Systems,
pages 34-40, Cheju Island, Korea, August 1995. IEEE.

[5] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and
L. Rodrigues. Fault-tolerant broadcasts in CAN.
Technical Report CTI RT-97-04, Instituto Superior
Técnico, Lisboa, Portugal, December 1997.

[6] J. Stankovic. Strategic directions in real-time and em-
bedded systems. ACM Computing Surveys, 28(4):751—
763, December 1996.

[7] Paulo Verissimo and Carlos Almeida. Quasi-
synchronism: a step away from the traditional fault-
tolerant real-time system models. Bulletin of the Tech-
nical Committee on Operating Systems and Applica-
tion Environments (TCOS), IEEE Computer Society,
7(4):35 39, Winter 1995.



