
Faculdade de Ciências da Universidade de Lisboa

Instituto Superior Técnico

DARIO: Distributed Agency for Reliable Input/Output

Project FCT POSC/EIA/56041/2004

Securing
the Timeliness of Input/Output Event
Handling in Real-Time Kernels

DARIO Technical Report RT-05-01

C. Almeida, M. Coutinho, J. Rufino

June 2005

Faculdade de Ciências da Universidade de Lisboa

Instituto Superior Técnico

Securing the Timeliness of Input/Output Event Handling
in Real-Time Kernels

To be submitted for publication: please do not distribute

Technical Report: DARIO RT-05-01
Authors: C. Almeida, M. Coutinho, J. Rufino
Date: June 2005

This work was partially supported by the FCT through Projects POSC/EIA/56041/2004 (DARIO) and the Large-Scale
Informatic Systems Laboratory (LASIGE).

LIMITED DISTRIBUTION NOTICE
This report may have been submitted for publication. In view of copyright protection in case it is accepted for publica-
tion, its distribution is limited to peer communications and specific requests.
c©2005, Project DARIO - Distributed Agency for Reliable Input/Output.

Securing the Timeliness of Input/Output Event Handling in Real-Time Kernels∗

Carlos Almeida
IST-UTL†

cra@comp.ist.utl.pt

Manuel Coutinho
IST-UTL

mabeco@comp.ist.utl.pt

José Rufino
FCUL‡

ruf@di.fc.ul.pt

Abstract

Embedded control systems that need to interact
with the real-world, performing input/output operations
through sets of sensors and actuators, may be subjected to
temporal uncertainties if not built with care. This happens
because external events, which are usually asynchronous,
are not completely controlled, and so, there is the pos-
sibility of having overload scenarios when a resource-
adequacy policy is not used due to not being cost-effective.
As most of these systems also have real-time requirements,
it is of utmost importance to provide the means to ensure
dependability in what concerns timeliness.

In this paper we address the problem of securing time-
liness properties in the presence of input/output event
handling. This work, performed within the scope of the
DARIO (Distributed Agency for Reliable Input/Output)
Project, is done as an extension to off-the-shelf real-
time kernels, by incorporating temporal protection mech-
anisms. A case study using the real-time kernel RTEMS
(Real-Time Executive for Multiprocessor Systems) is pre-
sented.

1 Introduction
Most embedded control systems need to interact with

the real-world, by performing input/output operations
through a set of sensors and actuators. This interaction
with the environment may cause some uncertainty in the
time domain because external events are not completely
controlled. As most of these systems also have real-time
requirements, this may pose a problem: how to ensure
timeliness guarantees when the event rate associated with
the interaction to the external world is not bounded (or at
least can be higher than the assumed value at design time)?

In order to solve this problem we need to address
the main methods to deal with input/output event han-
dling. Namely, interrupt control, switching between inter-
rupt and polling modes and tuning of polling cycle times,

∗This work was partially supported by FCT, through Project
POSC/EIA/56041/2004 (DARIO).

†Instituto Superior Técnico - Universidade Técnica de Lisboa, Avenida Ro-
visco Pais, 1049-001 Lisboa, Portugal. Tel: +351-21-8418397 - Fax: +351-21-
8417499.

‡Faculdade de Ciências da Universidade de Lisboa, Campo Grande - Bloco C8,
1749-016 Lisboa, Portugal. Tel: +351-21-7500254 - Fax: +351-21-7500084.

bounding of event handling rate (e.g. through event batch-
ing, event compression and pre-processing), are examples
of actions to take to try and reach the desired goals.

As a general rule the system may include computa-
tional domains with soft or with no real-time require-
ments at all and domains where those requirements are
extremely stringent. The overall objective is to prevent
the contamination of real-time system domains with re-
spect to timeliness by disturbances occurring on both the
physical and computational environments.

This is achieved by building a timing firewall able to be
integrated in the computational environments provided by
off-the-shelf real-time systems and kernels.

In particular, we apply these concepts within the
scope of the DARIO (Distributed Agency for Reliable In-
put/Output) Project, using the RTEMS (Real-Time Exec-
utive for Multiprocessor Systems) kernel.

The paper is organized as follows: in the next section
we give an overview of DARIOS’s architecture and its
computational environment; in Section 3 we present some
related work; in Section 4 input/output event handling is
addressed, in Section 5 timeliness protection mechanisms
are explained; in Section 6 a case study related to the in-
corporation of some of those timeliness protection mech-
anisms into the RTEMS real-time kernel is presented. The
paper ends with the conclusions.

2 The DARIO Project

Embedded and distributed computer systems play
nowadays a vital role in control applications as diverse as
industrial processes, automotive, railways, avionics and
aerospace, medical, etc. In this context, the relevance of
standard communication networks such as fieldbus can-
not be ignored. In the scope of the DARIO project, we
plan to use the Controller Area Network (CAN) fieldbus
as a communication infrastructure to build a distributed
agency for reliable input/output operations.

To meet the required high-levels of reliability, the
native CAN communication infrastructure needs to be
complemented with a set of hardware/software additional
mechanisms. The combination of a standard CAN layer
with such dependability enhancement mechanisms, has
been dubbed CAN Enhanced Layer (CANELy).

The services provided by CANELy (group communi-

cation, clock synchronization, node failure detection and
membership) are of fundamental importance to the avail-
ability of mechanisms handling object replication, compe-
tition and cooperation management, useful constructs for
fault-tolerant applications.

The DARIO project aims to develop a proof of concept
concerning the use of CAN, the Controller Area Network
fieldbus, in real-world highly fault-tolerant real-time ap-
plications. The main objectives are:

• extend/complement a state-of-the-art definition of a
fault-tolerant CAN-based communication layer with
enhanced and highly efficient mechanisms with re-
spect to dependability and real-time attributes.

• provide an implementation of those mechanisms,
dubbed CANELy (CAN Enhanced Layer), in a CAN-
based infrastructure.

• definition and design of a novel CAN-oriented mid-
dleware layer satisfying the stringent requirements of
(object-oriented) application levels.

• definition of an innovative uniform computational
model for modular and reliable input/output opera-
tions, to handle sensors/actuators.

• application of such a model to a selected set of tech-
nologies relevant to dependable real-time industrial
control: position control; robotics; power electron-
ics; electro-pneumatics.

2.1 The DARIO Architecture
The DARIO architecture (Figure 1) also involves a

need for a modular and generic approach to: the inte-
gration of physical input/output components; input/output
event translation to/from a computational entity; uniform
treatment of input/output events and message events in-
formation flows; provision of fault-tolerance and real-time
guarantees. A modular approach should also be followed
in the mapping and/or adaptation of the generic architec-
ture to specific technologies, thus limiting the overall im-
pact of technological aspects on system design. (In the
context of DARIO project we will work together with
some team members of the CORTEX project that also de-
veloped an architecture to handle generic events [21].)

On the other hand, the programmers of distributed con-
trol applications require constructs hiding as much as pos-
sible the implementation details of the underlying infras-
tructure (object-orientation).

Other aspect of application design concerns the possi-
ble partition and deployment of application components at
several levels of the architecture (e.g. smart sensors con-
figuration, resident robotics applications).

A solution to any of these problems in embedded envi-
ronments, sometimes with scarce resources, do represent
a set of real challenges that are being addressed in the con-
text of the DARIO project.

and

Actuators

Sensors

Control
Object

Physical

Environment

Layer
Translation

Control
Object

Control
Object

CAN Oriented
Middleware

CANELy
Platform

CAN fieldbus

Distributed I/O Agency

DARIO Communications

Body

Figure 1. Architecture of DARIO

2.2 The DARIO Computational Environment

Besides the more abstract aspects of the generic archi-
tecture, there must be some computational environment
to support the active entities and the management of re-
sources. This means operating system support. Even if
at application level we deal with more high level abstrac-
tions, and in the generic architecture there are also middle-
ware components that offer a more object-oriented view of
the system, we need nevertheless operating system sup-
port to build all this infrastructure. Concurrent applica-
tions will need support for multitasking, inter-task syn-
chronization and communication. System resources such
as memory and time will need to be managed in an effi-
cient way, and input/output operations must be correctly
handled to ensure the desired system dependability.

The overall system is a distributed system with several
nodes. Each node is composed of several different layers,
and may have specific characteristics. This means that it
is possible to have several different types of operating sys-
tems. For example, if we only need to address more high
level abstractions, a generic operating system able to sup-
port an object-oriented platform is adequate. However, if
there are also real-time requirements, then we may need
to use a system capable of supporting both real-time and
more generic operations (e.g. RT-Linux [2]).

For some more specific components that need to
deal with low-level input/output operations, provid-
ing real-time guarantees, then a real-time kernel (e.g.
RTEMS [13]) may be more suitable.

In any case, these off-the-shelf real-time kernels may
need to be extended with some specific timeliness control
mechanisms when interacting with the external world, to
avoid possible overload scenarios that could compromise
the dependability and real-time properties of other parts of
the global system.

If already available (for other reasons), or if the asso-
ciated cost is low when compared to the benefit, specific
hardware (e.g. FPGA – Field Programmable Gate-Array)
may also be used, incorporating programmable functions
that work as filters or validation mechanisms.

2

3 Related Work

The problem of ensuring timeliness properties is essen-
tial in order to support real-time applications. This must
be addressed at several different levels, and depends on
application characteristics and its interaction with the en-
vironment, and the overall system architecture. There has
been some work related to these issues, both at architec-
ture level and operating system level.

At the operating system level, there are mainly works
related to scheduling. Besides more generic real-time
scheduling algorithms found in the literature (e.g. RMS
– Rate Monotonic Scheduling, EDF – Earliest Deadline
First) [11, 10], that are mainly concerned with meeting
the deadlines of processes without having much interfer-
ence from input/output events, and assuming a worst-case
scenario that is known a priori, there are some works that
try to reserve specific percentages of CPU to critical activ-
ities thus providing a temporal protection to those critical
activities in more dynamic environments where overload
scenarios are not ruled-out [12, 6]. However, when there
is also event overload, event handling must be addressed
as well.

I/O throttling1 is another technique that can be used to
control the rate of input/output operations. In [18] this
technique is used together with other techniques to con-
trol resource usage. They use a sliding window of recent
events to compute the average rate for a target resource.
The assigned limit is enforced by the simple expedient of
putting application processes to sleep when they issue re-
quests that would bring their resource utilization out of the
allowable profile. However, dealing with external events
implies a different approach to enforce temporal protec-
tion. Events must be filtered at the interface between the
system and the environment.

At architecture level one fundamental distinction about
approaches to use, concerns the way the system evolves.
There are mainly two alternatives: the event-triggered ap-
proach and the time-triggered approach [22, 7]. As their
names suggest, in the first case the system reacts to events,
whereas in the second case it is the elapsing of time that
regulates system behavior. Although the time-triggered
approach makes it easier to reason about system proper-
ties in the time domain [9], it is not always realistic to as-
sume this type of interaction with the real-world. In such
cases, there must be some specific components in charge
of isolating the system from the environment, and provide
an interface that transforms events into state that will be
accessed by the system at pre-defined time instants [8].
These components act as temporal firewall interfaces that
make it possible to still reason in a time-triggered way
when interconnecting several different components, thus

1I/O throttling: Short for input/output throttling, a technique used to
more efficiently handle memory processing. During low-memory condi-
tions, a system will slow down the processing of I/O memory requests,
typically processing one sequence at a time in the order the request was
received. I/O throttling slows down a system but typically will prevent
the system from crashing.[1]

facilitating the composability at design time. An event-
triggered approach is, however, more flexible and, with
the right control mechanisms, can be used most of the
time.

Another work that addresses the problem of intercon-
necting components with different real-time properties is
[16]. They propose the concept of composite objects as
a way to integrate real-time and non-real-time computing
into a single object-based framework. A composite ob-
ject allows inter-operability between the real-time part and
the non-real-time part, but acts as a timing firewall to en-
sure non-interference in the time domain. This is achieved
by the management of priorities and having non-blocking
communication.

From the point-of-view of operating system support
to deal with real-time and non-real-time co-existence, an
example is RT-Linux [2], where a real-time kernel is in
charge of real-time activities, and runs Linux as a low-
priority task. Linux interrupts are intercepted by the real-
time kernel to avoid losing control.

The work presented in [17], is a recent work, devel-
oped in parallel with our work, that has a similar goal:
to prevent interrupt overload. However, they are mainly
concerned in bounding the interrupts, whereas we are also
interested in a more complete characterization of event oc-
currence before deciding about the existence of an event
overload. In [5] there is an effort to integrate task schedul-
ing and interrupt scheduling. Although an important issue,
it is not always possible to have this type of approach, due
to specific system limitations.

4 Input/Output Event Handling in Real-
Time Kernels

Besides all the aspects presented above, a specific
problem concerns the way the operating system provides
support to deal with the interaction with the environment.
Namely, the handling of input / output. If not correctly
handled, it may compromise the timeliness properties of
the global system. In a generic way, it is important to deal
with input / output in a modular fashion, so as to be able to
integrate several different devices in a common way and
provide reliable operation. But, when there are real-time
requirements, modularity is not enough. One must ensure
that the interaction with the environment, and the occur-
rence of events, do not cause uncontrolled interferences in
the system, that may jeopardize application goals.

Dealing with the environment is always a difficult task
because it implies interaction with components that are
not completely controlled by the system. The occurrence
of asynchronous events, if not bounded, may imply an
overload that if not handled with care will make the meet-
ing of deadlines an almost impossible mission.

The interface to external devices, to perform input /
output operations, implies at least two different aspects:
event detection, and event processing. The usual way to
detect events uses polling or interrupts. Event processing

3

can be done at once, or split in several different phases.

In a multitasking kernel, a polling approach is achieved
through the use of a task that periodically checks an input
/ output port to detect when an event has occurred and
needs processing. Depending on the priority of the task
and the periodicity of the check operation, it may be pos-
sible, or not, to detect in a timely fashion all events. If the
task has a low priority, there is the possibility of not being
able to perform the event handling at the right time or even
miss some events. This can happen when there are other
higher priority tasks ready to run, that will be chosen by
the scheduler. However, if one chooses to have a high pri-
ority task to deal with event checking, then it is possible to
waste a lot of CPU time just with the checking operation,
without doing any useful work, and preventing other tasks
from running. In order to minimize this effect, one possi-
bility consists in increasing the time between event checks
(increase task periodicity), and having the task sleep in the
meantime. This approach has the drawback of not offering
the guarantee of detecting all events. If the sleep time is
too large, there is the possibility of missing some events.

Another approach to deal with event detection is to
have them associated with interrupts. When an event oc-
curs, an interrupt is generated that, as soon as possible,
will be handled by a specific routine (interrupt handler).
While polling the device provides a more controlled way
to deal with the events, the use of interrupts provides a
more flexible architecture. In scenarios where the occur-
rence of events is not uniformly distributed in the time
domain, or where there are dynamic aspects in the overall
system, an interrupt approach is usually more effective.
There are even some situations where the use of inter-
rupts is advisable in order to support a given functionality.
For example, in embedded systems supported on batteries,
the need to increase the autonomy (from the point-of-view
of energy consumption) may imply the use of CPU low-
power states (sleep modes). Recovering from these states
may require the use of interrupts.

Although flexible, interrupts may introduce significant
overhead and cause uncontrolled situations if the event
rate is very high. In most multitasking kernels, inter-
rupts have higher priority than any task running on the
processor. If an interrupt overload situation takes place,
the application timeliness may be in jeopardy. In order to
have the flexibility of interrupts, but at the same time be-
ing able to preserve application timeliness properties, we
need timeliness protection mechanisms in event handling
to filter potential interrupt overloading. These overload
situations may occur due to unanticipated load, or due to
faulty scenarios.

In order to effectively support dependable real-time ap-
plications that need to deal with input / output operations,
and secure their timeliness properties, it is necessary to
incorporate timeliness protection mechanisms in the way
the real-time kernels handle input / output.

5 Timeliness Protection Mechanisms

Asynchronous event handling, based on interrupts, in-
troduces temporal uncertainty that may interfere with ap-
plication timeliness. The rate at which interrupts are gen-
erated, if not bounded, may affect task execution time and,
in a worst-case scenario, deadlines may be missed.

The main problem that needs to be solved is to avoid an
unbounded rate of asynchronous events causing an over-
head that was not anticipated at design time, and for which
there are not enough resources to deal with. There must
be some kind of “filter” if one wants to make sure that ex-
isting real-time tasks will get the assumed CPU execution
time, and thus will not miss their deadlines.

When the event rate increases, interrupt processing or
sample rate (depending on the used method) will also in-
crease if we do not want to loose any event and do not
change the way the events are handled. But, as we said
above, this may be a problem if an overload situation is
reached. And, in some cases, these extra events are not re-
ally important events. They may not add significant value
to the application (depending on application timing gran-
ularity), or they can even be generated due to error condi-
tions caused by accident (e.g. stuck key), or intentionally
provoked by an intruder. If we want to have a dependable
system, we must incorporate some fault-tolerant mecha-
nisms to deal with such situations and avoid timing inter-
ferences to the other parts of the system.

If an event rate increase starts to menace the correct
behavior of the overall system (application), then some
form of flow control is needed. If all events are important,
and the application has hard real-time requirements, then
this is a design problem, and a resource adequacy policy
is needed. Possible, the only thing that can be done is to
preform some optimizations at event processing level, if
there is still margin for that.

This optimization of event processing, can be related
to different modes of operation, including graceful degra-
dation of quality-of-service. For example, instead of
processing immediately every event, some form of pre-
processing can be done, compressing a set of events, or
handling them in a batch mode (Figure 2 and Figure 3).
This will reduce the overhead, but may not be able to en-
sure the desired level of temporal protection.

EventsEvent compression

Figure 2. Using event pre-processing (com-
pression) to reduce system load

4

EventsBatch processing

Figure 3. Processing several events to-
gether (batching) to reduce overhead

In a more drastic overload scenario, in order to en-
sure timeliness protection, we must limit the number of
events that enter the system. If the application can toler-
ate to miss some events, because, for example, they are
redundant or meaningless due to application time granu-
larity, then it is possible to implement a “filter” reducing
the number of events that will be handled and processed
(Figure 4). This can be done by reducing the sample rate,
through the modification of polling cycle time, or by dis-
abling event interrupts during some time intervals. This is
somehow similar to a “debounce” operation.

Events
Filter

Figure 4. Applying a filter to reduce the
number of events

Instead of having the system dealing directly with
all environment interaction, another approach consists in
having specialized subsystems in charge of those opera-
tions. Specific components, that may include both hard-
ware and software, will preform a first level processing
of events, presenting their results to the main system in a
more controlled way. This is usually the approach used
in a time-triggered architecture but may not be generic
enough in many scenarios. However, when the available
hardware architecture includes co-processors or symmet-
ric multi-processors (SMP), and the used operating sys-
tem has support for it, it may be an option to partition the
system in specialized components.

Besides event detection, event processing plays an im-
portant role, mainly if the processing time required repre-
sents a significant load to the system. The ability to de-
compose that event processing in several different phases,
may help in the integration with the scheduling of other
processing activities, and minimize the overall impact on

existing deadlines. For example, an interrupt handler will
save vital information related to the event in a very fast
way, and then an interrupt task will be in charge of the
processing part. This way, being a task, it can be sched-
uled together with the other tasks, with a suitable priority
that takes into account the overall system state. It is even
possible to reserve a given amount of “CPU bandwidth”
for specific activities, in order for them to not suffer inter-
ferences from the new activities.

In some cases, for example when dealing with legacy
code, running on off-the-shelf operating systems, it would
be desirable to be able to add some of those timeliness
protection mechanisms with minimal impact. A modular
approach providing the integration of interceptors to han-
dle the first phase of event detection/processing would be
extremely valuable.

The protection mechanism must intercept interrupts,
determine the interrupt rate to evaluate if there is an over-
load situation, and, if necessary, disable interrupts and
switch temporarily to a polling mode.

5.1 Event Characterization
In the implementation of those timeliness protection

mechanisms, we need to have the means to characterize
event occurrence, thus allowing to determine its rate and
decide if there is, or not, an overload situation (Figure 5).
Just measuring the time interval between any two inter-
rupts may not be enough. Although it is useful in specific
situations to detect a fault scenario if a pre-defined maxi-
mum inter-arrival time is exceeded, in a more generic sit-
uation it may be possible (from the point-of-view of the
application) to have several interrupts in a given time in-
terval, being that load tolerated. We would like to have
more information about the event occurrence before mak-
ing a decision.

Event
Characterization

(e.g. Digital Filter)

events

x[n] y[n]

(interrupts)
event info
(e.g. rate)

Figure 5. Generic module for event charac-
terization

Being interrupts discrete events, in the context of our
work, we decided to exploit discrete signal processing
knowledge [20], with adaptations, to deal with this prob-
lem. The idea is to have a digital filter, that is applied to
events and provides information about them. For now, we
are mainly interested in obtaining the event rate, but in
a more generic situation, depending on specific filter pa-
rameterization, it will be possible to obtain different type
of information about the events. Another advantage of
this approach is the possibility, if desired for performance
reasons and cost-effective for a given application, to im-
plement these filters using dedicated hardware (to be ad-
dressed in future work).

5

Discrete Event Processing
In order to apply the discrete event processing, we need

to discretize time [15, 20]. Although we may consider the
computing system internal clock as discrete (resolution
∼ 1µs), in a macroscopic scale, from the point-of-view
of event generation intervals, it can be considered as con-
tinuous. Discretization will be done through sample/hold.
Assuming a given sampling period (Tsample), system state
is periodically checked (sample) and kept (hold) until the
next sampling. Continuous time t is thus transformed to a
discrete time n through t = nTsample. To represent that
an event has occurred at discrete time n, a scalar discrete
function x[n] (x : Z → 0, 1) is used:

x[n] =

{

1, if an event occurs in n

0, otherwise (1)

Consider another discrete function z[n] which represents
the number of detected events until n

z[n] =

n
∑

i=1

x[n] (2)

assuming that no events occurred for n < 1 (that is,
x[n] = 0, ∀n < 1). This is, in the discrete signal
literature[20], described as running sum or “discrete in-
tegral”. It simply adds the number of events that occurred
in the past plus if an event is occurring now, at discrete
time n. In a recursive form, Equation 2 can be represented
as

z[n] = z[n − 1] + x[n] (3)
The event rate can therefore be described as another dis-
crete function y[n] given by

y[n] =
z[n]

n
(4)

which gives the average of the number of events occurred
until the time n. For a recursive form of y[n], the follow-
ing equation can be derived from equations 3 and 4

y[n] =
z[n − 1] + x[n]

n
=

(

1 −
1

n

)

y[n − 1] +
1

n
x[n] (5)

Although the average number of events may be impor-
tant from the point-of-view of event characterization, for
our current purpose (overload detection), we would like
y[n] to give, not the average number of events since the
origin of time, but information about a more instantaneous
event rate generation. Otherwise, if the system has been
running for a long time (large n), it will be very slow to re-
act to an event overload. This happens because all events
are assumed to have the same importance regardless of
having occurred recently or a long time ago.

The most obvious solution to this problem consists in
considering only the last events inside a temporal window
(D). In the literature this is known as a FIR (Finite Im-
pulse Response) filter, where z[n] would be given by

z[n] =

n
∑

i=n−D+1

x[n] (6)

The parameter D is known as the FIR dimension and rep-
resents the number of samples of x[n] to be considered in

the past. The event rate is now determined by the average
of the last D samples (note that this filter is equal to the
first one presented if D = n).

y[n] =
z[n]

D
=

1

D

n
∑

i=n−D+1

x[n] (7)

Another solution to have a more responsive system
consists in weighting events based on the time of its oc-
currence. For that, we can use an IIR (Infinite Impulse Re-
sponse) filter (recursive filter) and weight the events based
on the event occurrence time. The event rate is given by

y[n] = αy[n − 1] + (1 − α)x[n] (8)

where the parameter α belongs to the interval]0; 1[in or-
der to have a stable system and y[n] positive. Note that
this filter can also be converted to the first one if we make
α = (1 − 1/n) (see Equation 5).

Using our methodology it is possible to implement spe-
cific filters to handle special cases such as a maximum
burst size, for example. The filter of Equation 9 gives the
number of events in a given interval of duration B.

y[n] =

n
∑

i=n−B+1

x[n] (9)

5.2 Overload Detection and Handling
Using the event characterization module, it is now pos-

sible to detect if/when there is an overload situation. The
sampling of events (system state) to feed that component
could be done using a specialized periodic task. However,
that method is inefficient, implying to run the task even
when there are no events and, if the polling period is too
high, may also miss events. Moreover, if an overload sit-
uation is in progress, the polling task may be overrun by
interrupts and so the goal for which it was designed is not
achieved.

As we are mainly interested in overload situations
caused by interrupts, detecting an overload situation in-
side the Interrupt Service Routine (ISR) is a preferred
method. All events (interrupts) are accounted for, and
there is only associated processing when a new event is
generated. It also allows for a faster response to an over-
load situation by being able to immediately disable the
interrupt. The downside of this method is the time over-
head required inside an ISR to calculate the event rate, and
possible restrictions about the use of floating-point oper-
ations. However, it is possible to make some optimiza-
tions, as will be explained later. The fact that the system is
not sampled with a periodic rate (assumed in the discrete
event processing literature [15, 20]), is easily overcome by
registering the time of event occurrence and transform it to
discrete time as explained before (t = nTsample). When
a new event occurs we know the elapsed time since the
last registered event and thus are able to “reconstruct” the
sampling data because we know that there were no events
in the meantime.

When an overload is detected and the corresponding
interrupt is disabled, two methods can be used to allow

6

a graceful degradation of the services while maintaining
a bounded interference with the rest of the system. By
allowing interrupts in certain time intervals, the system
can limit the interference and admit some interrupts to be
processed. Adapting the time interval in which interrupts
are enabled, the system can cope with transient situations
and decide whether the overload has passed. A timer can
be used to inform when to re-enable the interrupt.

A second solution consists in having a special periodic
task that polls the device, checking for events and deter-
mining if an overload is still present. If not, the system
returns to the normal state by enabling again the interrupt.
The period and priority of this task must be such that it
does not interfere with the deadlines of the rest of the sys-
tem. The component to determine the current event rate
to decide if there is still an overload situation, or not, can
be the same as before. However, to provide a more stable
environment, a hysteresis cycle can be used with the def-
inition of two different thresholds M and m (see Figure
6), associated with mode switching. The value of the low
threshold (m) is even much lower than M because when
in polling mode there are events that might be missed (due
to a larger sampling period). When controlling the over-
load of more than one interrupt source, the same task can
be used acting as a cyclic executive calling the processing
routines associated with each event.

Figure 6. Using hysteresis for stability in
establishing thresholds for interrupt and
polling methods

5.3 Exploiting Kernel Native Facilities
The implementation of the timeliness control mecha-

nisms described above, may benefit from the availability
of specific kernel facilities. For example, the existence of
system calls to enable/disable interrupts specifying differ-
ent interrupt levels can give a high degree of flexibility in
interrupt management.

Being able to define/install interrupt handlers, get in-
formation about existing ones, substitute and possible
cascading new and old ones, allows to intercept events
and perform some of the filtering and pre-processing ex-

plained above with minimal impact on the existent infras-
tructure.

In what concerns interrupt handling and event process-
ing, the possibility of having different stages with different
behavior with respect to interrupt acceptance and schedul-
ing locking, may make a big difference in system tun-
ing. Interrupt handlers that may, or may not, re-enable
interrupts; special handlers that run with interrupts en-
abled, but with the scheduler locked; and interrupt tasks
or threads that are scheduled as any other thread; are ex-
amples of mechanisms that increase the flexibility to deal
with event handling without compromise specific timeli-
ness requirements.

Priority inheritance mechanisms [19] may play also an
important role in dealing with event processing and its re-
lation with real-time requirements, by allowing the propa-
gation of urgency to other components in such a way that
unbounded durations are avoided.

In more specific scenarios, where a multiprocessor ar-
chitecture is available (e.g. SMP), the ability to partition
the system in different components with different prop-
erties (similar to the creation of virtual machines), can be
used to reach a more controlled environment similar to the
one used in a time-triggered architecture.

5.4 Implementation in a Real-Time Kernel
The mechanisms described above can be implemented

in a real-time kernel with minimal impact on the exist-
ing infrastructure. The original Interrupt Service Routine
(ISR) associated with the event is replaced by another one
that, using the previous described components, determines
the interrupt rate, decides if there is an overload, disabling
the interrupt and switching to a polling mode if necessary,
and calls the original ISR to process the event (see Figure
7). The pseudo-code of the new ISR, implementing an IIR
filter to determine the interrupt rate, is described in Figure
8.

Overload
?

no

yesDisable interrupt
Mode switch

interrupt rate
Determination of

Original ISR

Figure 7. Flowchart of the new Interrupt Ser-
vice Routine

7

newISR(){
// event rate determination

t = getTime();
n = sampleHold(t);
y[n+1] =αn−last n y[n] + (1-α);
last n = n;

// overload detection and mode switching
if(y[n+1] > M){

state = overload;
disableInterrupt();
switchPollMode();

}

// event processing
originalISR();

}

Figure 8. Pseudo-code of Interrupt Service
Routine using an IIR filter

As explained before, due to the fact that events are reg-
istered in an asynchronous way (when an interrupt occurs)
instead of periodically (as assumed in the discrete sig-
nal processing literature), some adaptations must be done.
Continuous time must be converted to discrete time taking
into account the sampling period. As system state (event
occurrence) is only registered when events do occur, we
must also account the event non-occurrence during the
elapsed time. As x[n] = 0 when an event does not oc-
cur in n, y[n] is given by only the first term of Equation
8. This way, during an interval N without events, y[n] can
be obtained by Equation 10.

y[n] = αy[n − 1] = α
2
y[n − 2] = ... = α

N
y[n − N] (10)

As the term αn−last n is too computationally expensive to
be determined at runtime in the ISR, a table is used (built
during system initialization) to perform this calculation
with only one memory access. The exponent, which is
an integer, is used for indexing the correct table position.
If the exponent is higher than the table length, a value of
zero is used instead (recall that α < 1).

A FIR filter is somewhat more complex to implement
within an ISR. In order to optimize the processing time,
when an interrupt occurs, the time of its occurrence is
saved in a table containing the most recent interrupts (see
Figure 9). In this filter decisions are made using a tempo-
ral window of size D. By making the table in the form of
a ring-buffer of size D, the system can detect which inter-
rupts to consider in O(log(D)) operations by sequentially
dividing the array in two. It then advances the last inter-
rupt pointer to the oldest interrupt within the last D sample
periods. The sum of x[n] is then given by the difference
between the recent and the last interrupt pointers.

6 System Engineering: the RTEMS case
study

In order to evaluate the ideas presented above we used
the real-time kernel RTEMS. RTEMS (Real-Time Exec-

Figure 9. Ring-buffer for FIR filter memory

utive for Multiprocessor Systems) is a well-known real-
time multitasking kernel, with a modular architecture, of-
fering interesting characteristics to support the develop-
ment of real-time embedded control applications [13]. It
is an open source operating system, that is currently main-
tained by OAR (On-Line Applications Research Corpo-
ration – USA). It is available for several different plat-
forms/architectures, including the PC386, which is the
one we use in this work.

Although there are specific limitations associated with
a given platform, as for example the granularity of inter-
rupt level enable/disable operations in the PC386 platform
[14], the basic functionality available, in what concerns
I/O and interrupt management, makes it possible to build
the desired temporal protection mechanisms.

Using RTEMS, we developed a simple text mode win-
dows manager called VITRAL [4], that replaces the orig-
inal RTEMS console driver, and takes into consideration
timeliness properties (explained bellow), including a tem-
poral protection mechanism associated with console in-
put. With this mechanism we are able to tolerate overload
situations such as those induced by a stuck key, without
compromising the timeliness of other tasks. An earlier
version of that work was presented in [3].

Although the main ideas used for the keyboard are also
valid for other faster devices, for this paper we also made
some experiments using the network Ethernet driver avail-
able in RTEMS, to show the use of our timeliness pro-
tection mechanisms in such scenarios. We intercept the
interrupt handler, determine the interrupt rate, and, if it
is above a given threshold, the interrupt is disabled for a
given period of time. The results are presented bellow, in
the results subsection.

6.1 VITRAL
The VITRAL (Portuguese word for Stained Glass Win-

dow) driver is a simple yet reliable multiple text windows
manager [4]. It is completely compatible with standard
I/O calls (stdio library) and each window can read from
the keyboard and write to the output (Figure 10).

VITRAL, besides incorporating the timeliness protec-
tion mechanisms that we discuss in this paper, it is also
integrated with the RTEMS core in such a way that min-
imizes the dependency on a specific RTEMS distribution.
Figure 11 represents the architecture of that integration,
presenting VITRAL, the new console driver, as an exten-
sion to the RTEMS core, to be used by the application.
This is allowed by RTEMS since it is the application that

8

Figure 10. Aspect of VITRAL – a simple win-
dows manager for RTEMS

indicates the needed drivers in a static manner.

Application

VITRAL

Target Hardware

Core
RTEMS

Figure 11. VITRAL architecture within the
RTEMS scope

The internal VITRAL architecture includes a task that
receives messages to create new windows or to process
a hot-key. These hot-keys are used to select the desired
input window and perform other functions such as hide or
recover a specific window.

If not carefully addressed, VITRAL could present
problems in what concerns timeliness properties. As the
task that desires a window has to wait for its creation,
if the VITRAL internal task is created with a low pri-
ority, then a priority inversion problem may occur: a
medium priority task may occupy the processor and thus
the window is never created, leaving a higher priority task
blocked. If the VITRAL internal task has a high priority,
then the processing of hot-keys may jeopardize other tasks
timeliness.

To solve this problem one could take advantage of
the priority inheritance algorithms provided by the ker-
nel [13]. The chosen solution uses the priority ceiling al-
gorithm in which the application must provide a constant
that corresponds to the ceiling of the priority of all tasks
that create a window. This ceiling becomes the priority of
the VITRAL task during the window creation [19].

Another problem was related to input interrupt over-
head and the ability to detect a failure such as a stuck key,
preventing it from interfering with the timeliness proper-
ties of other tasks. Using the temporal protection mecha-

nisms explained in this paper, the original interrupt han-
dler associated with the keyboard was replaced by one
that controls the number of allowed interrupts to deter-
mine from the interrupt rate if a failure has occurred, and
act accordingly, before calling the original keyboard inter-
rupt handler to process keys.

An important implementation aspect is the floating
point operations during an ISR. One could take advan-
tage of the FPU (Floating Point Unit) but RTEMS does
not support by default (which is correct) the expensive
context saving operations needed. Instead, a scale fac-
tor was added to allow the use of integers with little loss
of resolution. For last, RTEMS only supports timers with
the granularity of a clock tick, which is user defined but
typically around 10ms. This resolution is not suitable for
this kind of filters due to the sampling time being of the
same order as the minimum inter-arrival time of the inter-
rupts, which is around 10 − 100µs. So, a new function
getTime was implemented based on the internal count
of Timer0 (in the Intel-386 architecture) offering a time
resolution of 1µs.

6.2 Results
To demonstrate the ability of the proposed control

mechanisms to cope with overload scenarios, a simple
test involving a rapid keyboard user and a deliberate stuck
key is presented. Although the keyboard is not a very
fast device (it can generate 33 interrupts per second), it
can, nevertheless, be used as a representative input de-
vice. To determine the interrupt rate, we used both an
IIR filter and a FIR filter with the following parameters:
Tsample = 1ms; M = 0, 02; m = 0, 002; α = 0, 999;
D = 1024 (FIR only); PollingPeriod = 300ms (polling
task).

Figure 12 represents the situation with the IIR filter and
where no protection mechanism is implemented. In the
first 4000 samples, a user is pressing keys normally and
y[n] tends to stabilize to a relatively low value. In between
n = 7000 and n = 11000 a stuck key is experimentally
simulated, resulting in the rise of y[n].

Figure 12. Event rate (IIR filter, no protection
mechanism)

One can see that the user is not fast enough to trigger
overload detection, whereas the rhythm of the stuck key is
more than enough. At approximately n = 4500 and n =

9

11000, y[n] decreases rapidly due to the way the function
αn−last n is implemented in the ISR. The table used has
a dimension of 200 sampling periods, meaning that if two
interrupts are separated by more than this time interval,
y[n] is set to (1 − α) = 0, 001. Besides reducing the
size of the table, this is also a good mechanism to rapidly
decrease y[n] when the user stops pressing keys.

In Figure 13 the same scenario is represented, but now
with the protection mechanism activated. When y[n] goes
above M , the system detects an overload, disabling key-
board interrupts and activating the polling task. During
the overload, the system reads the keyboard and because
there were pressed keys, the system stabilizes with ap-
proximately y[n] = 1/300 = 0, 0033. When the over-
load is over (y[n] < m), the system enables the interrupts
again and returns to normal mode.

Figure 13. IIR Filter and protection mecha-
nism

Similar results can be obtained using the FIR filter.
Figures 14 and 15 represent the same scenarios without
and with overload control mechanisms, respectively. Al-
though both filters present a similar behavior, the FIR fil-
ter stabilizes more rapidly, especially when the interrupts
are disabled. This happens because it follows an approx-
imately linear curve while the IIR follows a decreasing
exponential that has a slow variation when close to zero.

Figure 14. FIR filter without protection
mechanism

Tuning the parameters

Decreasing α makes the system faster, detecting the stuck
key in less time, but, on the other hand, it also allows the

Figure 15. FIR Filter and protection mecha-
nism

user to sometimes trigger a fault. The sample period must
be such that only one interrupt may be triggered during
that time. The determination of the polling period has to
trade-of the CPU percentage usage and the time needed to
determine if the failure has gone. Also, as said earlier, the
m value must be a function of the polling frequency. In
what concerns the threshold M , it can be defined taking
into account the interrupt rate above which the system gets
into overload, or one can choose another smaller value. A
possibility is to choose the interrupt rate associated with a
stuck key.

Controlling the load due to Ethernet

In order to evaluate, in practice, if the proposed timeliness
protection mechanisms used with the keyboard could also
be applied to a faster device, we made the following ex-
perience. We intercept the interrupt associated with the
Ethernet driver, determine the interrupt rate, and, when
the protection mechanism is active and the rate is above
a given threshold (0.025 in the scenario presented in Fig-
ure 17), the interrupt is temporarily disabled, in order to
avoid the extra load. Figure 16 represents the same situa-
tion without the protection mechanism activated. The net-
work traffic was created using an application in another
machine.

Figure 16. Interrupts associated with Ether-
net without protection mechanism

10

Figure 17. Interrupts associated with
Ethernet with protection mechanism (en-
able/disable interrupt)

As shown, we are able to enforce that the interrupt load
keeps bellow the specified threshold.

7 Conclusions and Future Work

Embedded control systems are used in many settings
such as industrial and factory automation, automotive,
railways, avionics and aerospace, medical applications,
etc. Most of these applications have real-time require-
ments and, at the same time, need to interact with the real-
world performing input/output operations through sets of
sensors and actuators. This interaction with the external
environment, and the related input/output event handling,
may introduce some temporal uncertainty due to the fact
that external events are not completely controlled by the
system, which may imply overload scenarios.

In this paper we addressed the problem of ensuring
timeliness guarantees through the use of protection mech-
anisms that prevent temporal interferences when dealing
with input/output event handling.

Using the RTEMS real-time kernel, a simple win-
dows manager called VITRAL, that replaces the origi-
nal RTEMS console driver, was developed taking into ac-
count some of the referred temporal protection mecha-
nisms. This is done as an RTEMS extension, with min-
imal impact on the existing infrastructure, and provides
protection against such problems as a stuck key that would
increase system load, possibly compromising task dead-
lines.

Although this case study uses a “console”, where the
interaction is done with a human user, which is a “slow”
interface, the same type of mechanisms can be applied to
other input/output operations more related to device con-
trol or network traffic, for example, that have a smaller
time granularity. That was experimentally demonstrated
using the network Ethernet driver.

The protection mechanism presented works for any in-
terrupt driven system, and can be implemented as a sepa-
rate module so as not to modify each driver that uses this

method. This can be done by replacing the ISR of the de-
sired interrupt, do some calculations and calling the orig-
inal ISR.

The ability to deal with such problems and adapt in a
dynamic and flexible way is of utmost importance when
supporting dependable real-time applications.

As future work, some improvements can be done by
creating more elaborated algorithms to determine if a fail-
ure has occurred, and to better study the interaction with
task scheduling.

References

[1] Webopedia - online dictionary for computer and inter-
net technology definitions. http://www.webopedia.com.
(http://www.webopedia.com/TERM/I/I O throttling.html).

[2] M. Barabanov and V. Yodaiken. Introducing real-time
linux. Linux Journal, 1997(34), February 1997.

[3] M. Coutinho, J. Rufino, and C. Almeida. Control of
event handling timeliness in RTEMS. In Proceedings of
the 17th IASTED International Conference on Paralel and
Distributed Computing Systems - PDCS 2005, Phoenix,
Arizona, USA, Nov. 2005. IASTED.

[4] M. Coutinho, J. Rufino, and C. Almeida. VITRAL: A text
mode windows manager for RTEMS. In Terceiras Jor-
nadas de Engenharia de Electrónica e Telecomunicações
e de Computadores, Lisboa, Portugal, Novembro 2005.

[5] L. E. L. del Foyo and P. Mejia-Alvarez. Custom inter-
rupt management for real-time and embedded system ker-
nels. In Embedded and Real-Time Systems Implementation
(ERTSI 2004) Workshop, December 2004.

[6] M. B. Jones, D. Rosu, and M.-C. Rosu. Cpu reservations
and time constraints: efficient, predictable scheduling of
independent activities. In Proceedings of the sixteenth
ACM Symposium on Operating Systems Principles, pages
198 – 211, Saint Malo, France, October 1997.

[7] H. Kopetz. Event-triggered versus time-triggered real-
time systems. In Proceedings of the International Work-
shop on Operating Systems of the 90s and Beyond, volume
563 of Lecture Notes In Computer Science, pages 87–101.
Springer-Verlag London, UK, 1991.

[8] H. Kopetz. Time-triggered real-time computing. In Pro-
ceedings of the IFAC World Congress, Barcelona, July
2002. IFAC Press.

[9] H. Kopetz and B. Gunther. The time-triggered architec-
ture. Proceedings of the IEEE, 91(1):112–126, January
2003.

[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. In Proceedings IEEE Real-Time Systems
Symposium, pages 166–171, 1989.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environment.
JACM, 20(1):46–61, 1973.

[12] C. W. Mercer, R. Rajkumar, and J. Zelenka. Temporal pro-
tection in real-time operating systems. In Proceedings of
the 11th IEEE Workshop on Real-Time Operating Systems
and Software, May 1994.

[13] On-Line Applications Research Corporation (OAR).
RTEMS C User’s Guide, edition 4.6.2, for rtems 4.6.2
edition, August 2003. (The RTEMS Project is hosted at
http://www.rtems.com.).

11

[14] On-Line Applications Research Corporation (OAR).
RTEMS Intel i386 Applications Supplement, edition 4.6.2,
for rtems 4.6.2 edition, August 2003.

[15] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete
Time Signal Processing. Prentice-Hall International, 2nd
edition, 1999.

[16] A. Polze and L. Sha. Composite objects: Real-time pro-
gramming with corba. In Proceedings of 24th Euromicro
Conference, volume II, pages 997–1004, Vaesteras, Swe-
den, August 1998.

[17] J. Regehr and U. Duongsaa. Preventing interrupt overload.
In Proc. of the ACM Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES 2005), Chicago,
IL, June 2005.

[18] K. D. Ryu, J. K. Hollingsworth, and P. J. Keleher. Efficient
network and i/o throttling for fine-grain cycle stealing. In
Proceedings of the 2001 ACM/IEEE conference on Super-
computing, Denver, Colorado, USA, 2001. ACM Press.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inher-
itance protocols: An approach to real-time synchroniza-
tion. IEEE Transactions on Computers, 39(9):1175–1185,
September 1990.

[20] S. Smith. The Scientist and Engineers Guide to Digital
Signal Processing. California Technical Publishing, San
Diego, California, 2nd edition, 1999. Analog Devices
Technical Library.

[21] P. Verı́ssimo, J. Kaiser, and A. Casimiro. An architecture
to support interaction via generic events. In Proceedings
of the 24th IEEE Real-Time Systems Symposium. Work in
Progress Sessions., Cancun, Mexico., December 2003.

[22] P. Verı́ssimo and H. Kopetz. Design of real-time systems.
In S. Mullender, editor, Distributed Systems, 2nd Edition,
ACM-Press, chapter 19, pages 491–536. Addison-Wesley,
1993.

12

