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Abstract

Fault-tolerant distributed systems based on field-buses may take advantage from reliable
and atomic broadcast. There is a current belief that CAN native mechanisms provide atomic
broadcast. In this work, we dismiss this misconception, explaining how network errors may
lead to: inconsistent message delivery; generation of message duplicates. These errors may
occur when faults hit the last two bits of the end of frame delimiter. Although rare, its influence
cannot be ignored, for highly fault-tolerant systems. Finally, we give a protocol suite that
handles the problem effectively.

1 Introduction

Fault-tolerant distributed systems are nowadays a mature technology, used in a variety of
applications and settings, from information repositories to computer control. The latter field is an
extremely challenging one, since it must normally combine distribution and fault-tolerance with
real-time, and given the decentralized nature of many of its problems, it is a natural application
for distributed systems. Furthermore, distributed computer control systems have increasingly
been based on field-bus networks. While there is a reasonable body of research on LAN-based
distributed fault-tolerant systems, we have not seen a great deal of such systems based on standard
field-buses, such as Profibus, FIP or CAN.

One reason may be because the efficient implementation of distributed fault-tolerance tech-
niques relies on well-known paradigms like state machines and replication management protocols,
and these are hard to implement in the simple field-bus environment. Given the multi-participant
nature of the interactions between replicated entities, the system may benefit to a great extent from
the availability of reliable communication services, such as those provided by group communi-
cation, membership and failure detection. In fact, these services may be extremely relevant for
the design of distributed computer control systems, based on field-buses: not only do they give
replicas a uniform treatment, but they easily handle constructs specifically intended for real-world
interfacing, such as functional groups of sensors and/or actuators.�
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However, the migration of fault-tolerant communication systems to the realm of field-buses
presents non-negligible problems, that we address in this work, in the context of CAN, the Con-
troller Area Network. CAN is a multi-master field-bus that has assumed increasing importance
and widespread acceptance in control application areas as diverse as shop-floor or automotive.

Perhaps influenced by a certain lack of accuracy in the standard CAN documentation, there
have been published works based on the assumption that CAN supports a (totally ordered) atomic
broadcast service [14, 15, 6]. The coverage of this assumption is only acceptable under modest
requirements on system reliability, and would lead to the implementation of fault-tolerant systems
that would function incorrectly, with unpredictable consequences for the controlled systems.

This work starts by dismissing that misconception, explaining how network errors may lead to:
inconsistent data frame transfers; generation of data frame duplicates. Given their probability of
occurrence, that we also estimate, the influence of those errors cannot be ignored, for fault-tolerant
systems and applications.

Secondly, since the need remains for fault-tolerant group communication on field-buses, we
address the problem in a comprehensive way, reasoning about the reliability of CAN communica-
tions and their weaknesses, integrating CAN own properties into a systemic model and showing
how a fault-tolerant broadcast primitive can be efficiently supported by a simple software layer
built on top of an exposed CAN controller interface.

The following discussion assumes the reader to be fairly familiar with CAN operation. In any
case, we forward the reader to the relevant standard documents [9, 17], for details about the CAN
protocol.

2 Controller Area Network

The Controller Area Network (CAN) is a bus with a multi-master architecture [9, 17]. The
transmission medium is usually a twisted pair cable and the network maximum length depends
on the data rate. Typical values are: 40m @ 1 Mbps; 1000m @ 50 kbps. Bus signaling takes one
out of two values: recessive, otherwise the state of an idle bus, occurs when all competing nodes
send recessive bits; dominant, which only needs to be sent by one node to stand on the bus. This
behavior comes from the wired-and nature of the CAN physical layer.

SOF CRC
Delimiter

ACK
Delimiter

ACK
Slot

CRC
Sequence EOFIDESRR Identifier Extension DLC Data FieldRTR rv1 rv0

Arbitration Field Control 
Field 

CRC Field ACK Field

1bit 11bit 1bit 1bit 18bit 1bit 1bit 1bit 4bit 0-64bit 15bit 1bit 1bit 1bit 7bit

Base
Identifier

only exists in CAN 2.0B

...

End of FrameBit-Stuffing and CRC  Coverage Sequence

does not exist in remote
frames

 rvX - reserved 
DLC - Data Length CodeRTR - Remote Transmission Request

SOF - Start of Frame
SRR - Substitute Remote Request
IDE - Identifier Extension Indicator

(d) -data frame (r) -remote frame

CRC - Cyclic Redundancy Code

ACK Slot -  Acknowledgment Slot
- set to (r) by the sender;
- changed to (d) by recipients in
   the absence of stuff/CRC errors.

EOF - End Of Frame

(r)  - recessive
(d) - dominant

(d) (r) (r) (d) (d) (r) (r) (r...r)
...

Figure 1: CAN frame structure

Frame identifiers are unique, and this feature, together with the wired-and behavior, is ex-
ploited to resolve conflicts in the access to the shared bus, whose access policy is carrier sense
multi-access with deterministic collision resolution (CSMA/DCR) scheme: several nodes may jump
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on the bus at the same time, but while transmitting the frame identifier each node monitors the bus;
for every bit, if the transmitted bit is recessive and a dominant value is monitored, the node gives
up transmitting and starts to receive incoming data; the node transmitting the frame with the low-
est identifier goes through and gets the bus. Automatic scheduling of a frame for retransmission
is provided after a loss in an arbitration process.

The terminology we will use is explained below. A message is a user-level piece of information.
A frame is a piece of encapsulated information that travels on the network. It may contain a message:
in CAN, a data frame is used for that purpose. However, it may consist of control information only,
such as a remote frame, which may be used in CAN to request the transmission of a data frame
from one or more remote nodes. We will use remote frames in support of our protocols, as will be
explained in Section 4.

Some details about CAN operation: the same identifier is used for data and remote frames, the
distinction being made through the remote transmission request (RTR) bit (Figure 1); no data field is
included in a remote frame; several nodes may simultaneously transmit the same remote frame � .
Finally, we assume the utilization of the CAN 2.0B extended format: the identifier extension
(Figure 1) is used to carry protocol control information, leaving the data field free to hold pure
data.

2.1 Impairments to dependability

Let us now discuss the impairments of the CAN protocol [9, 17] with regard the provision
of highly-dependable communication services. Those include shortcomings in fault-confinement
and error detection/signaling mechanisms. CAN has a comprehensive set of such mechanisms,
that make it very resilient. We do not discuss all of them, but the interested reader is referred
to [9, 17, 2, 20, 26] for details. Most failures are handled consistently by all nodes.

However, we have identified failure scenarios that can lead to undesirable symptoms such as
inconsistent omission failures and duplicate message reception. These scenarios occur when faults
hit the last two bits of the seven-bit end of frame delimiter (see Figure 1). However infrequent it
may be, we also show ahead that the probability of occurrence of this scenario is high enough to
be taken into account, at least for highly fault-tolerant applications of CAN. In fact, a naive atomic
multicast protocol based on CAN properties alone, would fail under such a scenario. So, in this
section we start by discussing the fault confinement mechanisms, then we discuss inconsistent
failures, and finally equate the probability of such failures occurring.

Fault confinement aims at restricting the influence of defective nodes in bus operation. It
is based on two different counters recording, at each node, transmit and receive errors, that is,
omission errors causing frames not to be received at their destinations. A fully-integrated node
is in the error-active state, the normal operating condition, where it is able to transmit/receive
frames and fully participates in error detection/signaling actions. In the presence of errors, the
error counters are updated, according to rules [9, 17] that make faulty nodes experience, with a
very high probability, the highest error counter increase. When any error counter exceeds 127,
the node enters an error-passive state where it is still able to transmit and receive frames, but after
transmitting a data or remote frame is obliged to an extra eight-bit wait period, before it is allowed
to start a new transmission. Furthermore, an error-passive node can only signal errors while
transmitting. After behaving well again for a certain time, a node is allowed to re-assume the
error-active status.�

Provided that the DLC field (Figure 1) is equal for all nodes. Otherwise, an un-resolvable collision would prevail.
The CAN specification allows any value within the admissible range � �
	���
 , to be used in the DLC field of remote frames.
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The erratic behavior of error-passive nodes represents a source of inconsistency that cannot go
uncontrolled. A possible solution is that prior to a node reaching the error-passive state, it will
have given a pre-specified number of omission errors, after which it will be shut-down, by forcing
it to enter what is called the bus-off state. Most of existing CAN controllers (e.g. [8]) are able to
issue a warning signal, to be used for that purpose, if any error counter exceeds a given threshold
[17]. A node in the bus-off state does not participate in any bus activity, being unable to send or
receive frames.

In consequence, the first problem, concerning the control of omission failures, is easily solvable,
but the failure assumptions must be quantified and the protocols must take those assumptions
into account (see Section 3 ahead). In absence of failures other than consistent omissions and
node failures, the CAN protocol would assure what is called atomic multicast: a totally ordered
message delivery either to all nodes or to none. For example, amongst the several error recovery
mechanisms, the sender automatically submits the same message for retransmission, upon the
occurrence of an error. Unfortunately, inconsistency scenarios may occur, that we discuss next.

set obliged to accept

A

no error (error flag seen as overload condition)

setRecipients - r r d
set obliged to accept (despite format violation)

error flag

Sender r r r

setRecipients - 
EOF
r r r

B

C

setRecipients - 
EOF
r r d

set obliged to accept
set has the frame

Sender r r
r->d transition

sender detects an error - schedules retransmission

error flag sender fails before retransmission

setRecipients - r d
set rejects the frame

error flag set has not the frame

setRecipients - r d
set rejects the frame

error flag

setRecipients - 
EOF
r r d set receives a frame duplicate

sender detects the error - schedules retransmission
Sender r r

r->d transition
error flag

if successful retransmission
all nodes receive the frame

SOF

Figure 2: Sources of inconsistency in CAN error handling

If the sender detects no error up to the last bit of the end of frame delimiter, it considers that
transmission as successful and no retransmission is due. However, should a subset of recipients � ,
tagged � set in Figure 2-A, detect an incorrect dominant value in the last bit of the end of frame
delimiter � , the protocol specifies that they must accept the frame in order to preserve consistency
with the complementary set of recipients, tagged � set in Figure 2-A, where a correct recessive
value was detected.

This opens room for inconsistent frame omissions, that occur in the following case: a dis-
turbance corrupts the last but one bit of the end of frame delimiter in the � set of recipients
(Figure 2-B); signaling of the error begins at the bit following the corrupted one; no node in the�

This subset may have only one element.�
Examples of causes for inconsistent detection are: electromagnetic interference or deficient receiver circuitry.
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� set accepts the frame. The sender also detects an error and schedules the frame for retransmis-
sion, after having performed its own error signaling actions. On the other hand, as explained in
the previous paragraph, the recipients in the � set must accept the frame because the error is only
signaled in the last bit of the end of frame delimiter.

At this point, we have a problem: an exact duplicate of the message will be accepted by the
recipients in the � set of Figure 2-B, once retransmission is accomplished. This happens because
the CAN protocol automatic message retransmission does not modify any frame field.

The problem gets worse if the sender fails after the first transmission and before the retransmis-
sion. This last scenario is depicted in Figure 2-C, which shows that inconsistent message omissions
take place, affecting only the � set.

2.2 Probability of inconsistent errors

In order to establish the importance of inconsistent error scenarios we have evaluated the
probability of their occurrence. Other types of errors are not addressed: consistent errors are
correctly processed by the CAN controllers; the residual probability of errors undetected by built-
in CAN error-detection is negligible[2].

Node crash in time interval ������������� ]  "!
#�$&%('*),+.-�/(0214365 798
Inconsistent frame omissions  $ ';:<)=+.>�?
@BA<C�DFE<GHE 1 �=I >�?J@
Inconsistent Message Duplicates  K$ I :<)L+M K!J#�$&%HA
Inconsistent Message Omissions  K$ I  K!
#�$&%

Figure 3: Probabilities of inconsistent errors

The results of our evaluation are summarized in Figure 3. The CAN inconsistent error proba-
bilities are established as a function of a fundamental communication channel parameter - the bit
error rate ( >�?
@ ). The model further considers an exponential distribution for node crashes ( N is the
failure rate) and those events are regarded as independent from frame omissions. The probability
of having an error in a particular bit of a frame obeys a geometric distribution, because the sender
stops transmitting after the signaling of the first error. In addition, it is assumed that the probabil-
ity for the same bit error being perceived simultaneously by all the nodes in the system is much
lower than having it perceived only by a subset of the nodes. Thus, in this slightly simplified
model the probability of inconsistent frame omissions only accounts for a temporal distribution
of errors, occuring in the last but one bit of a frame with an overall length of OQP�# 8 # bits. Given a��� period, corresponding to the interval between the end of a transmission and the end of the last
retransmission, if the sender crashes within ��� after the first error, with probability :<)R+S-�/T0U1K3B5 7V8FA ,
an inconsistent message omission occurs. Otherwise, the sender retransmits the message, but this
recovery action generates inconsistent message duplicates.

To finalize, we estimate the error probabilities in failures per hour, for several scenarios, in
the reference period of one hour. The number of inconsistency incidents per hour goes down
proportionally with a decrement in the network data rate, overall offered load or number of
nodes. For a 32 node CAN field-bus at 1 Mbps, a network overall load of 90% and an average
frame length of O P�# 8 # 'W)X)JY bits are assumed. Bit error rates are presented (cf. Table 1) both for
benign and aggressive environments, such as noisy industries and automotive. Node crash failure
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Bit Error Rate Node failures Inconsistent Message Inconsistent Message
per hour Duplicates per hour Omissions per hour

( Z�[]\ ) ( ^ ) _,`9acbJdfe _,`Vahg
i
dje _,`9acbJdfe _,`9acgJi
djek iBlnm k iBlpo grq sutwv k iuo gXqxs�tyv k i�o zXqx{�tyv k iBl(| k q bJs=v k i6lT}k i lpm grq sutwv k i o gXqxs�tyv k i o zXqx{�tyv k i l(~ k q bJs=v k i lT|k iBl(} k iBlpo grq sJ�=v k iJ� gXqxs
�,v k i
� zXqx{
s,v k iBl(~ k q bJ{=v k i6lT|k iBlpm grq sJ�=v k iJ� gXqxs
�,v k i
� zXqx{
s,v k iBln� k q bJ{=v k i6lT~k iBl(| k iBlpo grq sJ�=v k i6� gXqxs
�,v k iB� zXqx{
s,v k iBln� k q bJ{=v k i6lT~k iBlpm grq sJ�=v k i6� gXqxs
�,v k iB� zXqx{
s,v k iBl(� k q bJ{=v k i6lp�
Table 1: CAN inconsistent errors per hour

rates are compliant with the values in [25, 11]. Two different latencies (5 and 20 ms) are used as��� , with the former roughly corresponding to the time required for the transmission of one frame
from each node in the network. The results from this evaluation, presented in Table 1, should be
compared with the reference value of )JY 1(� incidents per hour, the well-known safety number from
the aerospace industry [16], which is today also a goal for automotive applications [10].

The results of Table 1 are a clear indication that the influence of inconsistent errors on system
correctness cannot be neglected, at least for highly fault-tolerant applications of CAN. A solution
to this problem is required.

3 System Model

In this section, we explain our fault assumptions, and discuss the CAN properties that underpin
our system model.

Assumptions

We enumerate our assumptions for the system, formalizing the discussion made in Section 2.1.
The model addresses a set of communicating processes sitting on a message passing subsystem
implemented by CAN. Each process is attached to the network through a CAN controller. Together,
they form a node. We assume that the processes are fail-silent and blame all temporary failures
on the CAN network components. However, when a process crashes, the whole node crashes. In
consequence, we may refer to process and node interchangeably.

We introduce the following definition: a component is weak-fail-silent if it behaves correctly
or crashes if it does more than a given number of omission failures in an interval of reference,
called the component’s omission degree. This assumption can be enforced by the error confinement
mechanisms discussed in Section 2.1, and is important to parameterize our protocols.

The CAN bus is a single-channel broadcast local network with the following failure semantics
for the network components (anything between two processes, including network adapters and
medium):� individual components are weak-fail-silent with omission degree �p� ;
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� failure bursts never affect more than �X� transmissions in an interval of reference � ;� omission failures may be inconsistent (i.e., not observed by all recipients);� there is no permanent failure of shared network components (e.g. medium partition).

CAN MAC-level properties

We can look at CAN as having a basic medium access control (MAC) sub-layer, that behaves
basically like a LAN MAC sub-layer— as do most other field-buses— and as such, exhibits the
same kind of properties that have been identified in previous works on LANs. See for example [24]
for a description of abstract properties of a LAN. Figure 4 enumerates the set of MAC-level CAN
properties relevant for this work. MCAN4 maps the failure semantics introduced earlier onto the
operational assumptions of CAN, being �����X� .

MCAN1 - Broadcast: correct nodes receiving an uncorrupted frame transmission, receive
the same frame.

MCAN2 - Error Detection: correct nodes detect any corruption done by the network in
a locally received frame.

MCAN3 - Network Order: any two frames received at any two correct nodes, are received
in the same order at both nodes.

MCAN4 - Bounded Omission Degree: in a known time interval �4�<� , omission failures
may occur in at most � transmissions.

Figure 4: CAN MAC-level properties

CAN LLC-level properties

However, CAN has error-recovery mechanisms on top of this basic functionality, that yield
interesting message properties. Again, this has the flavor of the logical link control (LLC) sub-
layer in LANs. Such properties have substantiated the claim that CAN exhibits atomic broadcast
capability. Let us start by analyzing the definition of such a broadcast, in order that we may
understand why this is not so under all circumstances. We use an adaptation of the definition of
atomic broadcast used by several authors [5, 19]:

AB1 - Validity: if a correct node broadcasts a message, then the message is eventually delivered
to a correct node.

AB2 - Agreement: if a message is delivered to a correct node, then the message is eventually
delivered to all correct nodes.

AB3 - At-most-once Delivery: any message delivered to a correct node is delivered at most once.

AB4 - Non-triviality: any message delivered to a correct node was broadcast by a node.�
For instance the duration of a broadcast round. Note that this assumption is concerned with the total number of

failures of possibly different components.
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AB5 - Total Order: any two messages delivered to any two correct nodes, are delivered in the
same order to both nodes.

However, the failure modes that we have identified cause the message-level properties of CAN
to be somewhat different. Namely, while the omission failures specified by MCAN4 are masked
in general at the LLC level by the retry mechanism of CAN, the existence of inconsistent omissions
as discussed in Section 2.1 postulates two things:� that there may be message duplicates when they are recovered;� that some � of the � omissions will show at the LLC interface as inconsistent omissions.

Figure 5 enumerates the LLC-level properties of CAN. LCAN6 specifies the probability of
inconsistent omission failures � , where � is normally several orders of magnitude smaller than �
(cf. � 2.1). The other five properties explain why CAN does not ensure atomic broadcast alone.
LCAN1 and LCAN4 are in conformity with the AB specification. However, LCAN2 is conditioned
to the sender not failing, and LCAN3 postulates that a message can be delivered in duplicate. The
total order property (AB5) is not even ensured (LCAN5). This clearly violates the atomic broadcast
specification. In fact, it does not even guarantee reliable broadcast, since a reliable broadcast
specification is equivalent to properties AB1 to AB4.

LCAN1 - Validity: if a correct node broadcasts a message, then the message is eventually
delivered to a correct node.

LCAN2 - Best-effort Agreement: if a message is delivered to a correct node, then the
message is eventually delivered to all correct nodes, if the sender remains correct.

LCAN3 - At-least-once Delivery: any message delivered to a correct node is delivered at
least once.

LCAN4 - Non-triviality: any message delivered to a correct node was broadcast by a
node.

LCAN5 - Total Order: not ensured.

LCAN6 - Bounded Inconsistent Omission Degree: in a known time interval � ��� , incon-
sistent omission failures may occur in at most � transmissions.

Figure 5: CAN LLC-level properties

In consequence, the objective of this work is to devise a set of mechanisms to be inserted
between the exposed interface provided by the CAN layer and the user processes, in order to
transform the LCAN properties provided by the former, into the AB properties expected by the
latter. This will be addressed in the next section.

4 Fault-Tolerant Broadcasts in CAN

We now present a set of fault-tolerant broadcast protocols that make use of the unique CAN
properties. We depart from an eager diffusion-based protocol, called EDCAN. This protocol
exploits the properties of CAN remote frames to optimize the diffusion of messages with an
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empty data field. Useful for the dissemination of control information, EDCAN is less efficient in
disseminating messages with a non-empty data field. So, we have improved the basic protocol to
provide: an unordered reliable broadcast primitive, called RELCAN; a lazy (unordered) reliable
broadcast primitive, called LZCAN; a totally ordered atomic broadcast primitive, called TOTCAN.
The protocol suite, which is illustrated in Figure 6, executes on top of the CAN layer. Each protocol
provides a request primitive (used to invoke the protocol), a confirm primitive (used to inform the
sender of protocol local completion), and an indication primitive (used to deliver the message to
the upper layer).

CAN Standard Layer

EDCAN TOTCAN
(totally ordered)

Upper Layer Interface

RELCAN

(unordered)
LZCAN

Primitive Protocol
Type EDCAN RELCAN LZCAN TOTCAN

Request edcan.req relcan.req lzcan.req totcan.req
Confirm edcan.cnf relcan.cnf lzcan.cnf totcan.cnf
Indication edcan.ind relcan.ind lzcan.ind totcan.ind

Figure 6: CAN fault-tolerant broadcast protocol suite

None of the protocols is based on the exchange of acknowledgments [12, 19]: such approach is
not an interesting solution in CAN, because it consumes too much bandwidth (a scarce resource
in CAN) and makes no use of the built-in error detection properties.

4.1 CAN Layer

The CAN layer is made from a CAN controller (e.g. [8]) and the corresponding software
driver, that includes a set of standard primitives for: request the transmission (.req) of data or
control messages � ; confirm to the user a successful message transmission (.cnf); indication of a
message arrival (.ind). The semantics of each particular primitive is summarized in Figure 7. The
information encapsulated in data/remote frames always include a message control field. Data
frames may also include message data. Most of the attributes are defined in the standard document
[9] and have an appropriate support from the CAN controller. However, a few exceptions exist:

i) local arbitration by urgency level may require specific management actions [8];
ii) reception of own transmissions is not assured in all controllers [8], so low-level

engineering may be required;
iii) the local execution environment must process frame arrivals with a latency low

enough to guarantee that no receive buffer overrun incidents will ever occur � .�
Control messages are encapsulated in remote frames.�
This kind of omission failures have not been included in our model.
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.req .cnf .ind .req .cnf .ind

can-abortcan-data can-rtr

.req

CAN controller

CAN Layer

CAN Communication Channel

Primitives Semantics

Data Remote

can-data.req Arbitration of requests by urgency level, on local and global basis. Only
a node is allowed to transmit, at a time.

can-rtr.req Arbitration of requests by urgency level, on local and global basis. Several
nodes may simultaneously transmit the same remote frame. Remote
frames do not have a data field.

can-data.cnf can-rtr.cnf Signals the successful transmission of a data/remote frame. Provides the
guarantee that property LCAN1 is secured.

can-data.ind can-rtr.ind Signals the arrival of a data/remote frame, including own transmissions.
The local execution environment has to guarantee that no frame is lost
due to CAN controller receive buffer overrun.

can-data.nty Extension to standard: signals the arrival of a data frame, without deliver-
ing the message data.

can-abort.req Aborts a frame transmission request. Has effect only on pending requests.
In-progress transmissions cannot be aborted.

Figure 7: CAN layer structure and interface

The set of primitives specified in Figure 7 includes an extension to the standard interface:
a notification primitive (.nty), signaling the arrival of a data frame (own transmissions included).
However, the message data field is not delivered. Only the message control information is included
in the notification.

mid<type<u, cdata>, s, sn> 
Protocol Control Information

SOF CRC
Delimiter

ACK
Delimiter

ACK
Slot

CRC
Sequence EOFIDESRR Identifier Extension DLC Data FieldRTR rv1 rv0

Base
Identifier ...

CAN 2.0B frame format

...

 Sender 
identifier

Sequence number (sn)

 Source 
identifier

Scheduling 
Information

1bit 8bit 6bit 6bit 2bit 6bit

Control 
  data

(cdata)(s)
Urgency Class (u)

- high
- low

Figure 8: Protocol control information in CAN frame identifiers

The protocols above the CAN layer use the message format illustrated in Figure 8. The fields
relevant for protocol operation include: a type reference, the sender identifier (s) and a sequence
number (sn). The type reference merges urgency class (u) and control data (cdata) information. The
remaining fields only matter to communication channel access arbitration. In data frames, the
source identifier references the node actually sending the frame; in remote (control) frames it is
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identical to the sender identifier. The scheduling information specifies message urgency, given traffic
patterns, latency classes and overall offered load [23, 27].

4.2 Message Diffusion

The first protocol that we discuss is a diffusion-based protocol [3, 1] with some optimizations
to save channel bandwidth. In this protocol, the recipients are responsible for retransmitting the
message. Retransmissions are issued as soon as the original message is received; thus we have
called this protocol “Eager Diffusion”, or simply EDCAN. If enough nodes retransmit the message,
one of these nodes will be a non-faulty sender and CAN properties will ensure the reliability of
message delivery. The protocol is sketched in Figure 9. The protocol is invoked by the upper layer
providing two parameters: a unique message identifier and an optional data field. As discussed
in Section 4.1, the control information in the message identifier includes a message type (type),
sender identifier (s), and sequence number (sn).

Eager Diffusion-based Protocol (EDCAN)
Initialization
i00 ndup(mid) := 0; // number of duplicates, kept for each message

Sender
s00 when edcan.req(mid � type,s,sn � , mess) invoked at p do // mid, message identifier
s01 if mess = NULL then
s02 can-rtr.req (mid);
s03 else
s04 can-data.req (mid, mess);
s05 fi;
s06 od;
s07 when can-rtr.cnf(mid, mess:=NULL) confirmed at p or can-data.cnf(mid, mess) confirmed at p do
s08 edcan.cnf (mid, mess);
s09 od;

Recipient
r00 when can-rtr.ind(mid, mess:=NULL) received at q or can-data.ind(mid, mess) received at q do
r01 ndup(mid) := ndup(mid) + 1;
r02 if ndup(mid) = 1 then // new message
r03 edcan.ind (mid, mess);
r04 if mess = NULL then
r05 can-rtr.req (mid); // clustered transmissions
r06 else
r07 can-data.req (mid, mess);
r08 fi;
r09 else if ndup(mid) � j then // � , is the inconsistent omission degree bound
r10 can-abort.req (mid);
r11 fi;
r12 fi;
r13 od;

Figure 9: Eager diffusion-based protocol

The protocol works as follows. The sender requests the transmission of the message to the
CAN layer. For messages with data field the can-data primitive is used. For messages with an
empty data field, remote frames (can-rtr) are used. If the sender does not fail the original message
is delivered. To tolerate the failure of the original sender, recipients deliver the first copy of the
message and eagerly retransmit it.
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For messages with a data field, retransmissions flow on the channel one at a time. This may be
too costly in terms of network load. The bounded inconsistent omission degree property (LCAN6)
is exploited to optimize network bandwidth consumption: as soon as a node receives :H�X�j)
A copies
of the same message it tries to abort the corresponding send request. However: only pending
requests can be aborted (cf. � 4.1); protocol execution delays may prevent a non-negligible number
of requests to be timely aborted. As a result, a number of transmissions greater than :���� )
A
should be expected. Although we do not advocate the straight utilization of EDCAN to broadcast
messages with a data field, it may be useful to other protocols. For example, ahead we will use
EDCAN for error recovering upon sender failure, in a reliable broadcast protocol.

A more efficient optimization of network bandwidth utilization can be implemented when
EDCAN is requested to broadcast a message with no data field. It exploits an interesting property
exhibited by remote frames: if two or more nodes transmit simultaneously identical remote frames,
these transmissions can be “clustered” in a single physical frame, due to the wired-and nature of
the physical layer. For the same reason, all recipients receive the original message at approximately
the same time. However, slight variations on the corresponding processing delays prevent the
different retransmission requests to be issued “exactly” at the same time.

Node 2

Node n

Node k

Node 1
Sending <m1>

Forwarding <m1>

simultaneous transmissions

(sub-optimum clustering) Sending <m1>

Sending <m2>
Forwarding <m1>

Forwarding <m1>

(perfect clustering)

simultaneous transmissions

Figure 10: CAN remote frame clustering

In a lightly loaded network, one may expect the fastest node to start remote frame retransmis-
sion in advance, as shown in Figure 10. However, for acceptably short processing delay variances,
other nodes will “cluster” their remote frame retransmissions, in a bounded number of physical
channel packets ¡ . Conversely, for a heavy loaded network it is reasonable to expect pending
transmissions to have started in the meantime. The delays in network access, introduced by these
transmissions, balance processing delays variance and thus it is reasonable to expect all retransmis-
sions following the original dissemination of a remote frame to be clustered in a single physical
layer transmission. In any case, for a network with a moderate number of nodes, this allows
significant savings in network bandwidth. The upper layer should use remote frame features as
much as possible, relying on control frames that do not require a data field. We will later present
an (unordered) reliable protocol and an atomic broadcast protocol that use this approach.

Note that a protocol variant where message dissemination continues even after the � trans-
missions, which corresponds to removing lines r09-r10 in Figure 9, makes EDCAN resilient to
a possible lack of coverage on the value assumed for the inconsistent omission degree bound, �
(LCAN6). Naturally, this is achieved through a higher utilization of the network bandwidth.¢

For example, in a system with a processing delay variance lower than £]¤�¥p¦ (the duration of a 2.0B remote frame at
1 Mbps), these remaining transmissions will cluster in a single frame.
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4.3 Unordered Reliable Message Diffusion

Despite the optimization we have introduced, the "Eager Diffusion" approach is not cost-
effective for broadcast of data messages due its high bandwidth consumption. We now present
a protocol that exploits CAN validity (LCAN1) and best-effort agreement (LCAN2) properties. The
protocol, illustrated in Figure 11, was called RELCAN as it provides an unordered reliable broad-
cast service for data messages. Message retransmission by the protocol is only due in the event of
sender failure.

Unordered Reliable Message Diffusion Protocol (RELCAN)
Initialization
i00 rel sn := 0; // local sequence number
i01 ndup(mid) := 0; // number of duplicates, kept for each message
i02 data(mid) := NULL; // buffer to store the data part of the message

send-and-confirm (auxiliary function)
a00 send-and-confirm(mid � R-DATA,s,sn � , mess) do
a01 can-data.req (mid � R-DATA,s,sn � , mess);
a02 when can-data.cnf(mid � R-DATA,s,sn � , mess) confirmed do
a03 can-rtr.req (mid � CONFIRM,s,sn � );
a04 od;
a05 od;

Sender
s00 when relcan.req(mess) invoked at p do
s01 rel sn := rel sn + 1;
s02 send-and-confirm (mid � R-DATA,s:=p,rel sn � , mess);
s03 relcan.cnf (mess);
s04 od;

Recipient
r00 when can-data.ind(mid � R-DATA,s,sn � , mess) received at q do
r01 ndup(mid) := ndup(mid) + 1;
r02 alarm start.req ( §©¨nªr«
¬X­X® ,mid); // §©¨nªX«J¬6­r® , is the protocol timeout value
r03 if ndup(mid) = 1 then // new message
r04 data(mid) := mess; // stores the received message
r05 relcan.ind (mess);
r06 fi;
r07 od;
r08 when can-rtr.ind(mid � CONFIRM,s,sn � ) received at q do
r09 data(mid) := NULL; // clears the stored message
r10 alarm cancel.req (mid);
r11 od;
r12 when alarm.nty(mid) received at q do // timer expires
r13 edcan.req (mid, data(mid));
r14 od;
r15 when edcan.ind(mid � R-DATA,s,sn � , mess) received at q do
r16 ndup(mid) := ndup(mid) + 1;
r17 if ndup(mid) = 1 then // new message
r18 relcan.ind (mess);
r19 fi;
r20 od;

Figure 11: Unordered reliable broadcast protocol

The protocol works as follows. The sender assigns a unique identifier to the data message
based on the node unique identifier (s) and on a local sequence number (rel sn). The control
information is carried within the message identifier (type is set to R-DATA). Then, the sender calls
an auxiliary “send-and-confirm” function, that initiates a two-phase protocol.
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In the first phase, send-and-confirm requests message transmission and awaits the correspond-
ing confirmation from the CAN controller. When this confirmation is obtained, the sender is sure
that the message has been received by all correct recipients and initiates the second phase, dissem-
inating a CONFIRM message. The reception of the CONFIRM message indicates to all recipients
that the associated data message has been received and that no retransmission is required. Re-
cipients deliver the first copy of the message and prepare themselves to retransmit the message.
However, and in opposition to the eager protocol, retransmissions are not initiated immediately.
Instead, recipients wait first for the CONFIRM message. Only in the case the CONFIRM message
is not received, receivers retransmit the message by invoking the EDCAN protocol.

In the best case, the RELCAN protocol sends once the data message and once the CONFIRM
control message. In the event of sender failure, the performance of RELCAN approaches the one
observed in the EDCAN protocol.

At this stage, we have succeeded in making properties LCAN2 and LCAN3 equivalent to
properties AB2 and AB3.

4.4 Lazy Message Diffusion

The utilization of the CAN network bandwidth by the RELCAN protocol is optimized in the
unordered reliable broadcast protocol, to be discussed next. The protocol, illustrated in Figure 12,
was called LZCAN and performs the “lazy” reliable diffusion of a message, trading a potentially
high protocol maximum termination time in the presence of sender failure with a low utilization
of the network bandwidth, should no failures occur.

The LZCAN protocol does not make use of any control message and works as follows. The
sender assigns a unique identifier to the data message based on the node unique identifier (s)
and on a local sequence number (lz sn). The control information is carried within the message
identifier (the type field is set to L-DATA). The message is sent simply using the CAN standard
layer primitive, can-data.req.

The recipients store ¯ and deliver the first copy of the message. In the absence of sender failure,
the CAN properties validity (LCAN1) and best-effort agreement (LCAN2) guarantee message delivery
to all correct nodes.

Message retransmission is initiated only upon the notification of sender failure, as provided
by a companion membership service, such one of those described in [18]. The design of the
LZCAN protocol assumes that no node is reintegrated before the notification of its failure, by the
membership service. Upon node failure notification and for each node in the failed set, the protocol
checks if some message is stored in the retransmission buffer (lines r08-r12, of Figure 12). Should
this condition hold, the EDCAN protocol is invoked (edcan.req) for the reliable dissemination of
each one of those messages.

The extension to the CAN standard layer interface, specified in Figure 7 and signaling the
reception of a given data message, is used by the LZCAN protocol as an implicit confirmation that
the previous data message has been successfully disseminated � .

A message is removed from the LZCAN retransmission buffer when: its dissemination, by the
sender, has been implicitly confirmed (line r17, of Figure 12); the message is being disseminated
by the EDCAN protocol (line r23).°

Each received message is temporary kept in the protocol retransmission buffer.±
This optimization scheme assumes that within a node message transmissions are ordered according to their urgency

and scheduling information (cf. Figure 8), which implies that message dissemination is confirmed only upon the
reception of a message with an overall urgency level lower than the one being confirmed (line r16, of Figure 12).
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The LZCAN protocol makes properties LCAN2 and LCAN3 equivalent to properties AB2 and
AB3, thus ensuring message reliable broadcast. The advantage of the LZCAN protocol is that in
the absence of sender failure, it does not incur in the control message overheads of the RELCAN
protocol.

Lazy Reliable Message Diffusion Protocol (LZCAN)

Initialization
i00 lz sn := 0; // local sequence number
i01 ndup(mid) := 0; // number of duplicates, kept for each message
i02 data(mid) := NULL; // message identifier and data, kept for each message

Sender
s00 when lzcan.req(mess) invoked at ² do
s01 lz sn := lz sn + 1;
s02 can-data.req(mid � L-DATA,s:=p,lz sn � , mess);
s03 od;
s04 when can-data.cnf(mid � L-DATA,p,lz sn � , mess) confirmed at ² do
s05 lzcan.cnf (mess);
s06 od;

Recipient
r00 when can-data.ind(mid � L-DATA,s,n � , mess) received at ³ do
r01 ndup(mid) := ndup(mid) + 1;
r02 if ndup(mid)= 1 then // new message
r03 data(mid) := mess;
r04 lzcan.ind (mess);
r05 fi;
r06 od;
r07 when msh-can.nty(f nodes) received at q do // node failure notification
r08 for each s ´ f nodes do
r09 for each d mid � s � and data(d mid � s � ) µ¶ NULL do
r10 edcan.req (d mid � s � , data(d mid � s � ));
r11 od;
r12 od;
r13 od;
r14 when can-data.nty(mid � s � ) received at q do // data message notification
r15 for each d mid � s � and data(d mid � s � ) µ¶ NULL do
r16 if u rank(d mid � s � ) > u rank(mid � s � ) then // u rank accounts for message overall urgency
r17 data(d mid � s � ) := NULL;
r18 fi;
r19 od;
r20 od;
r21 when edcan.ind(mid � L-DATA,s,n � , mess) received at ³ do
r22 ndup(mid) := ndup(mid) + 1;
r23 data(mid) := NULL;
r24 if ndup(mid)= 1 then // new message
r25 lzcan.ind (mess);
r26 fi;
r27 od;

Figure 12: Lazy reliable broadcast protocol

4.5 Totally Ordered Protocol

The previous protocols make no effort to enforce a total order on message delivery. In this
section we propose a new protocol, called TOTCAN, that uses the CAN network order property
(MCAN3) to provide a totally ordered reliable broadcast service. The basic idea of the protocol
is to have the messages delivered in the same order by which the encapsulating frames cross the
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communication channel. If due to omissions, the same message is forced to cross the channel more
than once, only the order of the last retransmission (the successful one) is considered (previous
duplicates are discarded).

Totally Ordered Message Diffusion Protocol (TOTCAN)
Initialization
i00 tot sn := 0; // local sequence number
i01 tot queue := empty // queue of received messages
i02 // enqueue(tot queue,mid,mess) inserts a message at the end of the queue as UNSTABLE
i03 // mess := dequeue(tot queue, mid) removes a message from the queue
i04 // discard(tot queue, mid) removes a message from the queue and releases the message buffer
i05 // stable(tot queue,mid) marks a message as STABLE

deliver-in-order (auxiliary function)
a00 deliver-in-order(tot queue) do
a01 while message mid at the head of tot queue is STABLE do
a02 mess := dequeue (tot queue, mid);
a03 totcan.ind (mess);
a04 od;
a05 od;

Sender
s00 when totcan.req(mess) invoked at p do
s01 tot sn := tot sn + 1;
s02 can-data.req (mid � T-DATA,s:=p,tot sn � , mess);
s03 od;
s04 when can-data.cnf(mid � T-DATA,p,tot sn � , mess) confirmed at p do
s05 edcan.req (mid � ACCEPT,p,tot sn � , NULL);
s06 od;
s06 when edcan.cnf(mid � ACCEPT,p,tot sn � ,NULL) confirmed at p do
s07 totcan.cnf (mess);
s08 od;

Recipient
r00 when can-data.ind(mid � T-DATA,s,sn � , mess) received at q do
r01 discard (tot queue, mid); // preserves network order, by: discarding the queued message;
r02 enqueue (tot queue, mid, mess); // queuing the last received message duplicate.
r03 alarm start.req ( §©·r¸X·X¬X­X® ,mid); // §©·r¸6·r¬X­X® , is the protocol timeout value
r04 od;
r05 when edcan.ind(mid � ACCEPT,s,sn � , NULL) received at q do
r06 alarm cancel.req (mid);
r07 stable (tot queue, mid);
r08 deliver-in-order (tot queue);
r09 od;
r10 when alarm.nty(mid) received at q do // timer expires
r11 discard (tot queue, mid); // discards the queued message
r12 deliver-in-order (tot queue);
r13 od;

Figure 13: Totally ordered protocol

The protocol is illustrated in Figure 13. As RELCAN, the protocol is also a two-phase protocol.
In the first phase, called the dissemination phase, the sender tags the data message with its identifi-
cation (s) and a sequence number (tot sn). As before, control information is carried in the identifier
field (type is set to T-DATA). Then, the sender broadcasts the message using the bare CAN inter-
face. When the message is received, instead of being immediately delivered to the application, it is
held in a receive queue marked as UNSTABLE. In the presence of inconsistent omissions, the same
message can be received more than once. To preserve network order, an UNSTABLE message is
moved to the tail of the queue each time a message duplicate is received. The data message is
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never retransmitted by the recipients; should the sender fail before the message becomes stable, it
is simply discarded by all recipients.

The second phase is initiated as soon as the sender receives, from the local CAN controller,
a confirmation of success in the broadcast of the data message. At this point, the sender can be
sure that all correct recipients have received the message. To make this information available to
all recipients, the sender transmits an ACCEPT message. Because the ACCEPT message must be
reliably broadcast to all recipients, the EDCAN protocol is used. Since the control field is able to
hold all the information required, the ACCEPT message has no data field. When the ACCEPT is
received, the associated message is marked as STABLE and can be delivered as soon as it reaches
the head of the queue. The use of EDCAN in the second phase ensures that all recipients receive
ACCEPT (or none does). In the case of sender failure before it is able to issue the ACCEPT to at
least one correct destination, deadlock is prevented by timeout. This approach is possible due to
the synchronous nature of the system.

In the best-case, TOTCAN requires the transmission of the data message plus the bandwidth
corresponding to a pair of remote frames, required by the EDCAN protocol in the reliable broadcast
of the ACCEPT message, if remote frame clustering is perfect. When remote frame clustering is
sub-optimum, an extra ACCEPT message is transmitted (Figure 10).

At this point, we also have secured property LCAN5 (equivalent to AB5), finally reaching our
original goal of ensuring that CAN satisfies atomic broadcast.

4.6 Bounded Sequence Numbers

For sake of clarity, we describe the protocols using unbounded sequence numbers. The syn-
chronous properties of the system allow to bound the sequence numbers: just two bits in the CAN
message identifier are required to ensure correct protocol operation. In case of sender failure, the
recipients are able to establish the message order and, if required, retransmit the last message. The
use of a sequence number based on a single bit will not allow message ordering. This problem
was identified and thoroughly analyzed in [4].

5 Related Work

A number of authors have studied the problem of implementing fault-tolerant broadcasts.
Some authors consider an asynchronous communication model, where no known bound is explicitly
placed on message transaction delays [12]. In our system, the existence of bounded and known
message transmission delays is assumed, as in other synchronous communication models [1, 3, 19].
Matching the application area of distributed control, a synchronous communication protocol is
described in [11] that integrates a comprehensive set of services relevant for the implementation
of fault-tolerant systems (e.g. group communication, membership and clock synchronization).

The use of group communications is not very common, in the so-called field-bus arena where
most standards rely on OSI-like point-to-point communications. One of the few exceptions is the
Controller Area Network [17, 9]. A set of CAN high layer protocols (SDS [7], J1939, OSEK [13])
specify the use of group communications, but lack to provide a clear definition of the corresponding
system fault-model. An accurate definition of the system fault-model is essential to evaluate
whether or not CAN weakness with regard fault-tolerant broadcast have been taken into account.
Perhaps mislead by some lack of accuracy in CAN standards, some researchers neglect those
aspects and claim that CAN supports (totally ordered) atomic broadcasts [14, 15, 6].
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6 Bandwidth Utilization

In this section, we analyze the utilization of CAN bandwidth by each protocol in our suite of
fault-tolerant broadcast protocols.

Unless stated otherwise, we assume the dissemination of a data message of maximum length,
which is encapsulated in a CAN data frame of nominal duration OK¹ºP�# 8 # . We use the superscripts»�¼

and ½ ¼ to signal the best and worst-case durations, of a given frame. Control messages are
encapsulated in remote frames, whose nominal duration is given by OK¾ 1(¿<8&¿ .

The numeric values for these parameters, drawn from [22], are summarized in Table 2. The
values in Table 2 include the nominal duration of the intermission period, i.e. the nominal three
bit bus idle period that usually precedes the transmission of any data or remote frame [9, 17].

Nominal data Duration (bit-times)
Frame Symbol field length CAN 2.0A CAN 2.0B

(bits) min. (
»�¼

) max. ( ½ ¼ ) min. (
»�¼

) max. ( ½ ¼ )
Data frame On¾ÀP�# 8 # 0 47 55 67 80On¹SP�# 8 # 64 111 135 131 160
Remote frame OT¾ 1(¿<8&¿ 0 47 55 67 80

Table 2: Normalized duration of CAN data and remote frames

6.1 EDCAN protocol

Let us start our analysis discussing the CAN bandwidth used by the EDCAN protocol in the
reliable dissemination of a data message.

DISSEMINATION OF DATA MESSAGES

In the absence of omission failures, the utilization of network bandwidth, Á , expressed in
bit-times, is simple given by �FÂ :Á »�¼ÄÃ=Å !Æ9Ç�È2É2Ê :�ËnÌr��ÌnA�'Í:H�y�ÏÎf�Ð)
A I O »�¼¹ºP�# 8 # (1)

Á ½ ¼ÄÃ=Å !Æ9Ç�È2É2Ê :�ËnÌr��ÌnA�'Í:H�y�ÏÎf�Ð)
A I O ½ ¼¹ºP�# 8 # (2)

which accounts for: the best and worst-case durations of the :H�X�j)
A messages required to terminate
protocol execution; a number Î of message transmit requests, that the EDCAN protocol is unable
to timely abort.

In the event protocol execution is disturbed by the occurrence of � inconsistent frame omissions,
the CAN bandwidth consumed in these frame transmission attempts ��� has to be accounted for, in
addition to the network bandwidth utilization in the absence of failures.�&Ñ

The superscripts ÒÔÓ and ÕXÓ are used to signal, respectively, the best and worst-case utilization of CAN bandwidth.
The superscript Öu× is used to signal a no failure scenario.���

A scenario signaled through the use of superscript ØH×�Ù .
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Á ½ ¼ÄÃ $�!J�Æ9Ç�È2É2Ê :�ËnÌr��ÌnAÚ' � I O ½ ¼¹ºP�# 8 # �WÁ ½ ¼ÄÃ=Å !Æ9Ç�È2ÉKÊ :�ËpÌr��ÌnA' � I O ½ ¼¹ºP�# 8 # �*:H�y�ÏÎf�Ð)
A I O ½ ¼¹ºP�# 8 # (3)' :�Û I �=�ÏÎ��W)
A I O ½ ¼¹ºP�# 8 #
DISSEMINATION OF CONTROL MESSAGES

We now account for the CAN bandwidth used by the EDCAN protocol in the dissemination of
a control message. Several situations are considered. In the first case, we assume that no omission
failures occur and the perfect clustering (cf. Figure 10) of control message retransmissions.Á »�¼ÄÃ=Å !Æ9Ç�È2ÉKÊ :ÝÜ�Þ©ß2�<@©ÞBà�Aá'âÛ I O »�¼¾ 1(¿<8&¿ (4)

Thus, only two contributions accounted for in equation (4): the original dissemination of
the control message; the (clustered) retransmission of this message by each recipient. Should
clustering be sub-optimum (cf. Figure 10), an extra dissemination of a control message needs to
be accounted for, as described by equation:Á ½ ¼ÄÃ=Å !Æ9Ç�È2ÉKÊ :ÝÜ�Þ©ß2�<@©ÞBà�Aá'âã I O ½ ¼¾ 1(¿<8&¿ (5)

In a worst-case scenario, we assume that the dissemination of the control message is disturbed
by the occurrence of � inconsistent frame omissions. Thus:Á ½ ¼ÄÃ $&!
�Æ9Ç�È2ÉKÊ :�Ü�ÞBß2��@BÞBà�AR'Ï� I O ½ ¼¾ 1(¿�8ä¿ ��ã I O ½ ¼¾ 1(¿<8&¿ (6)

6.2 RELCAN protocol

In the analysis of the RELCAN protocol, we assume again the dissemination of a data message
of maximum length. In the absence of failures, we simply account for the transmission of the data
message and of the corresponding CONFIRM message, encapsulated in a CAN remote frame, of
duration O ¼ 1(¿<8&¿ '�On¾ 1(¿<8&¿ . Á »�¼ÄÃ=Å !å"ÆVæTÈ2ÉKÊ 'âO »�¼¹ºP�# 8 # �ÏO »�¼¼ 1(¿<8&¿ (7)

Á ½ ¼ÄÃ=Å !å"ÆVæTÈ2ÉKÊ 'âO ½ ¼¹ºP�# 8 # �ÏO ½ ¼¼ 1(¿<8&¿ (8)

Should the sender fail before the issuing of CONFIRM signal, the EDCAN protocol is invoked.
Under the assumption that the operation of the EDCAN protocol is disturbed by the occurrence
of � inconsistent frame omissions, the utilization of CAN bandwidth is given by:

Á ½ ¼ÄÃ $&!
�åQÆ9æ(È2ÉKÊ ' O ½ ¼¹SP�# 8 # ��Á ½ ¼ÄÃ $&!J�Æ9Ç�È2ÉKÊ :�ËnÌX�<ÌpA' O ½ ¼¹SP�# 8 # �â:�Û I �=�ÏÎf�â)JA I O ½ ¼¹ºP�# 8 # (9)' :ÝÛ I �L�çÎj�çÛXA I O ½ ¼¹SP�# 8 #
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6.3 LZCAN protocol

Similar results can be drawn for the LZCAN protocol. However, since the LZCAN does not
make use of control messages, the corresponding utilization of CAN bandwidth in the studied
cases, is given by: Á »�¼ÄÃ=Å !æ(èKÈ2ÉKÊ 'âO »�¼¹ºP�# 8 # (10)

Á ½ ¼ÄÃ=Å !æ(èKÈ2ÉKÊ 'âO ½ ¼¹ºP�# 8 # (11)

Á ½ ¼ÄÃ $�!J�æ(èKÈ2ÉKÊ 'Í:�Û I �À��Îf��ÛXA I O ½ ¼¹ºP�# 8 # (12)

6.4 TOTCAN protocol

Finally, we account for the utilization of CAN bandwidth by the TOTCAN protocol. In the
absence of failures, one should take into account that the dissemination of the ACCEPT message,
encapsulated in a CAN remote frame of duration O2# 1(¿<8&¿ 'éOn¾ 1(¿<8&¿ , may cluster in a perfect or
sub-optimum ways. Thus: Á »�¼ÄÃ=Å !§2ê9§ È2É2Ê 'âO »�¼¹ºP�# 8 # �ÏÛ I O »�¼# 1(¿�8ä¿ (13)

Á ½ ¼ÄÃ=Å !§2ê9§ È2É2Ê 'âO ½ ¼¹ºP�# 8 # �Ïã I O ½ ¼# 1(¿�8ä¿ (14)

In addition, should the dissemination of data messages be disturbed by the occurrence of �
inconsistent frame omissions, then:Á ½ ¼ÄÃ $�!J�§2ê9§ È2ÉKÊ ';:H�w�Ð)
A I O ½ ¼¹ºP�# 8 # �Ïã I O ½ ¼# 1(¿<8&¿ (15)

6.5 Analytic results

The results from our evaluation are represented in Figure 14. The use of a 32 node CAN
field-bus at 1 Mbps is assumed. The other relevant network parameters are: �ë'ì) ; Î�'ì) .

The individual contributions of each protocol component to the overall utilization of CAN
bandwidth are specifically identified in Figure 14. Two relevant contributions, which cannot be
avoided, do concern: the original transmission of a message, by the CAN controller; message
retransmission, by the CAN controller, in the event of inconsistent frame omissions (IFO). The
other contributions, which are not intrinsically handled by the CAN controller, concern the specific
overheads of each protocol: the issuing of simple control messages (e.g. the CONFIRM message,
in the RELCAN protocol); the reliable broadcast of a control message, by the EDCAN protocol (e.g.
the ACCEPT message of the TOTCAN protocol); the reliable dissemination of a data message, by
the EDCAN protocol, in the event of sender failure.

Though protocol overheads may represent a significant part of the overall bandwidth used
by each particular protocol, these messages are fundamental to secure protocol correctness in the
presence of sender failure.
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Figure 14: Utilization of CAN bandwidth by fault-tolerant broadcast protocols

7 Dimensioning of Protocol Timers

In this section, we discuss some specific guidelines for the dimensioning of the protocol timers
to be used in the RELCAN and TOTCAN protocols. The dimensioning of protocol timeout values
heavily depend on the scheduling policy of control traffic in regard to data messages. Under the
assumption that EDCAN retransmissions and protocol control traffic have precedence over data
messages, one use the following expression to estimate protocol timeout values:

í �Äî 8 ' í ¼ P�%xï � ð í ¼ P�%xïO »�¼¾LP�# 8 # I � » $ 8]ñ I Á ½ ¼ÄÃ=Å !Æ9Ç�È2ÉKÊ :�Ü�ÞBßK�<@BÞ©à�A I � » $ 8 �Ï� ¿ I Á ½ ¼ÄÃ=Å !Æ9Ç�È2ÉKÊ :�ËnÌX�<ÌpA I � » $ 8 � í 8 P 1 ² ¿ � 8 (16)

where òWó represents the ceiling function � � . The different contributions in equation (16) account
for: � the protocol processing delay upper bound, in the issuing of a control message,

í ¼ P�%�ï ;� the second term depends on the maximum number of message transmit requests �F� which
could be issued during the protocol processing period. The term accounts for the period
required to the reliable broadcast of the corresponding control messages;� the third term accounts for the time required to the transmission of � ¿ data messages, by
the EDCAN protocol. This term results from the assumption that � ¿ nodes executing the
RELCAN protocol may fail after transmitting the data message, but before the issuing
of the corresponding CONFIRM message. Thus, recovery by the EDCAN protocol is
needed;� finally,

í 8 P 1 ² ¿ � 8 is the maximum transmission delay introduced by the traffic of other
protocol components, such as the node failure detection and membership protocols
discussed in [18].�&�

The ceiling function ôHõBö is defined as the smallest integer not smaller than õ .�&�
The corresponding normalized frame duration is given by, ÷ÀÒÔÓø DÄE�GHE .
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Note that the occurrence of network errors is not included in equation (16), being treated under
a general inaccessibility model, as explained in [21].

Given the parameters: � ¿ '�Û , í ¼ P�%xïQ'�ùXYBú9û and
í 8 P 1 ² ¿ � 8 '�Y6úüû , one obtain a typical timeout value

of
í �Äî 8 'ì)
ýXÛXYBú9û .

8 Conclusions

There is a growing importance of fault-tolerant distributed systems based on field-buses. Given
the utility of reliable and atomic broadcast for implementing applications on those systems, we
studied the reliability of these protocols as provided by CAN native mechanisms. We discovered
that under infrequent but plausible fault scenarios, CAN provides neither reliable nor atomic
broadcast. Fault-tolerant systems using those primitives would function incorrectly, with unpre-
dictable consequences for the controlled systems. In consequence, we formalized the properties
actually secured by CAN, and we gave a suite of protocols that complement CAN’s functionality
in order to achieve reliable and atomic broadcast. In addition, we have analyzed the performance
of our protocol suite in terms of CAN bandwidth utilization and provided some guidelines for the
dimensioning of protocol timeout values.
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portuguese).

[5] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S.J. Mullender, editor, Distributed
Systems, ACM-Press, chapter 5, pages 97–145. Addison-Wesley, 2nd edition, 1993.

[6] H. Hilmer, H. Kocks, and E. Dittmar. A fault-tolerant architecture for large-scale distributed control systems. In
Proceedings of the 4th IFAC Workshop on Distributed Computer Control Systems, pages 43–48, Seoul, Korea, July 1997.
IFAC.

[7] Honeywell Inc - MICRO SWITCH Division, Freeport, IL, USA. Smart Distributed System - Application Layer Protocol
(version 2.0), November 1996.

[8] Intel. 82527 - Serial Communications CAN Protocol Controller, December 1995.
[9] ISO. ISO International Standard 11898 - Road vehicles - Interchange of digital information - Controller Area Network

(CAN) for high-speed communication, November 1993.

[10] H. Kopetz. Automotive electronics - present state and future prospects. In Digest of Papers of the 25th International
Symposium on Fault-Tolerant Computing Systems - Special Issue, pages 66–75, Pasadena, California-USA, June 1995.
IEEE.

[11] H. Kopetz and G. Grunsteidl. TTP - a protocol for fault-tolerant real-time systems. IEEE Computer, 27(1):14–23,
January 1994.

[12] P.M. Melliar-Smith and L.E. Moser. Fault-Tolerant Distributed Systems Based on Broadcast Communication. In
Proceedings of the 9th Internacional Conference on Distributed Computing systems, pages 129–133. IEEE, June 1989.

[13] OSEK/VDX Working Group. OSEK/VDX Communications - Open Systems and the corresponding interfaces for auto-
motive electronics (version 2.0A), October 1997.

[14] M. Peraldi and J. Decotignie. Combining real-time features of local area networks FIP and CAN. In Proceedings of
the 2nd International CAN Conference, pages 8.11–8.21, London, England, October 1995. CiA.

[15] S. Poledna. Fault tolerance in safety critical automotive applications: Cost of agreement as a limiting factor. In
Digest of Papers of the 25th International Symposium on Fault-Tolerant Computing Systems, pages 73–82, Pasadena,
California-USA, June 1995. IEEE.

22



[16] D. Powell. Failure mode assumptions and assumption coverage. In Digest of Papers, The 22nd International
Symposium on Fault-Tolerant Computing Systems, pages 386–395, Boston, Massachusetts-USA, July 1992. IEEE.

[17] Robert Bosch GmbH. CAN Specification Version 2.0, September 1991.

[18] A. Rodrigues and J. Conceição. A CAN-based membership protocol. IST Graduation Project Report, Advisors: J.
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