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Hard Real-Time Operation of CAN

José Rufino Paulo Verı́ssimo
ruf@digitais.ist.utl.pt pjv@di.fc.ul.pt

IST - UTL � FC/UL �
Abstract

Continuity of service and bounded and known message delivery latency, are reliability
requirements of a number of real-time applications. One key issue with this regard, is that
networks are subject to periods of inaccessibility. While some are genuine partition failures,
others derive from incidents in the LAN or Field-bus protocol operation (e.g. token loss).
While both are undesirable, the latter are often disregarded, leading to failures of expected
hard real-time properties of the network.

We address this problem by treating both events under a general inaccessibility model,
whereby temporary glitches in network operation are allowed, provided that their duration
is bounded and known. Most time-critical applications can indeed live with these glitches,
provided that they are short and infrequent enough.

In this paper, we do a detailed study on reliable real-time operation of the CAN bus. We
show that hard real-time behaviour can be achieved under the inaccessibility model. In the
end, we compare the results of previous studies concerning real-time local area networks, and
show that CAN exhibits rather short inaccessibility periods.

Keywords: Control Area Networks, Local Area Networks, Real-time Computing Systems, Communi-
cations Reliability, Communications Protocols.

1 Introduction

In reliable real-time systems, the fundamental requirement of communications is that there
be a bounded and known message delivery latency, in the presence of disturbing factors such
as overload or faults. For applications where this requirement is very strict (e.g. safety-critical),
specialised space-redundant architectures like point-to-point graphs [7] or multiple local area
networks [1, 6] are clearly the solution. These architectures are however costly and complex. When
that requirement is not so strict, one can find a number of design alternatives for implementing
cost-effective network infra-structures, through the use of existing technology. An example of
such approach is the DELTA-4 system [8], which uses standardised local area networks (LANs),
whose only redundancy may exist in the physical layer.

On the other hand, Controller Area Networks (CAN) are gaining growing acceptance for
sensing and actuating in control and automation, an area where cost-effectiveness, continuity of
service, and determinism in transmission delays, are requirements of a number of applications.
With the adequate techniques, non-replicated LANs and CANs can be used to satisfy reliable�
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hard real-time requirements. These imply correctness in the time-domain, tolerating faults such
as omissions and partitions.

The crux of fault-tolerant operation of a standardised network such as CAN, is its behaviour
upon periods of inaccessibility. Some of them correspond to real physical partitions. Others
however, are virtual: they are glitches in the protocol operation that prevent communication
temporarily, and are neglected in many analysis. One example is the period subsequent to token
loss in a token network. In [15], a technique for achieving hard real-time behaviour of non-
replicated local area networks is presented. It is based on treating real and virtual partitions under
a common inaccessibility model.

Having in mind the goals stated above, this paper provides a framework for reliable hard
real-time operation of the CAN bus. Section 2 summarises our technique and its application to
the CAN bus. Sections 3 and 4 perform an analysis of CAN inaccessibility and discuss control
mechanisms. Section 5 does a comparison with previous LAN inaccessibility studies.

2 Reliable Real-Time Communication

A reliable hard real-time network exhibits bounded and known message delivery latency, in
the presence of disturbing factors such as overload or faults.

We consider that the network is not replicated, and use a divide-and-conquer strategy that
treats in isolation each of the faults we consider in our model: timing, omission, inaccessibility.

1 - enforce bounded delay from request to transmission of a frame � , given the worst case load
conditions assumed;

2 - ensure that a message � is delivered despite the occurrence of omissions;
3 - control inaccessibility.

Condition 1 aims at handling timing faults due to overload. It assures that any frame is sent
within a known time bound, even if it does not arrive. Condition 2 has been introduced to tolerate
omission faults and ensures that a message is delivered, even if that implies transmission of several
frames. Achieving condition 3 is the fundamental issue behind a simplex (non-replicated) hard
real-time network. It will be the central issue of this paper.

The Abstract Network Model

The conditions expressed above are sufficient to achieve fault-tolerant hard real-time commu-
nication. A model fulfilling those conditions, as well as other important characteristics � , has been
thoroughly discussed in [15]. This model, termed abstract network, synthesizes a set of common
network properties abstracting from the network’s physical characteristics, based on which upper
layer protocols can be built. Table 1 presents the sub-set of time-related properties, relevant for
our discussion.

The broadcast networks we are considering are made from several components. The network
channel may omit to deliver frames (omission errors) due to failures in those components. Omis-
sion errors may have many origins: mechanical defects in the cable, EMI corruption of a passing
frame, modem synchrony loss, receiver overrun, transmitter underrun, etc. If it is possible to
make assumptions about the number of components with failures during an arbitrary interval�

Network level information packet.	
User level information packet.

Such as recognition of urgency.
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An1 - Bounded Omission Degree: In a known interval ���� , omission errors may affect
at most � transmissions.

An2 - Bounded Transmission Delay: Every frame queued at a network access point,
is transmitted within a bounded delay �������������� .
An3 - Bounded Inaccessibility: In a known interval ���� , the network may be inacces-
sible at most � times, with a total duration of at most � ����� .

Table 1: Abstract Network Properties

of concern, � �"! , and the number of consecutive omission errors produced by a given component
(omission degree - #%$ ). Property An1 can be justifiably defined and represents the foundation of
the abstract network error processing protocols [15, 16].

Property An2 specifies a maximum transmission delay, which is �'&�! in the absence of faults.
It depends on the particular network, its sizing, parameterising and loading conditions. This
issue has been studied in the literature, not only for LANs [5, 4], but also for CAN [13]. On the
other hand, � (�)�* is added to account for the inaccessibility time, yielding the worst-case figure.
Inaccessibility and its control specifically concern property An3, and will be discussed at some
length in the sequel of the paper.

Controlling Partitions: Inaccessibility

Let a network be partitioned when there are subsets of the nodes which cannot communicate
with each other + . This is the classical definition, and it is normally attached to a notion of physical
disconnection. However, since the network is not replicated, there are a number of causes for
partition as defined above, some of which are virtual rather than physical: bus medium failure
(cable or tap defect), ring disruption, transmitter or receiver defects/perturbations; reformation
of LAN logical ring, multiple station joins; active monitor loss, token loss; etc. Some standard
networks have embedded means of recovering from some of the situations described above (e.g.
token regeneration for token-based LANs), but since this recovery process takes time, the network
will exhibit periods where no service is provided.

If this is not tolerated, timeliness of applications is at stake, which is not acceptable in a hard
real-time system. In consequence, a semantics of inaccessibility fault must be defined, so that we
may devise adequate fault-tolerance techniques[15]:

Inaccessibility:

i) a component refrains from providing service;
ii) its users perceive that state;

iii) inaccessibility limits (duration, rate) are specified;
iv) violation of those limits implies permanent failure of the component.

The approach taken to tolerate inaccessibility is based on the following idea: if one knows
for how long it lasts, then reliable real-time operation of the system is possible, provided that
those glitch periods are acceptably short, with regard to service requirements. The conditions,

The subsets may have a single element. When the network is completely down, all partitions have a single element,
since each node can communicate with no one.
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underlying the techniques to implement such tolerance, discussed in the following section, are the
following:- recover from all conditions leading to partition (physical or virtual) in a given failure

scenario, that is reestablish connectivity among affected nodes;- ensure that the number of inaccessibility periods and their duration have a bound and that
it is suitably low for the service requirements;- accommodate inaccessibility in protocol execution and timeliness calculations.

Uncontrolled partitions are of course still possible, because systems do fail, but that event
means the total and permanent failure of the real-time communications subsystem. With the
methodology we have just described, An3 is attained, and a network exhibiting this property
satisfies the third and last condition to achieve reliable hard real-time behaviour.

3 Implementing Inaccessibility Control

Given the concept and shown it is the foundation for reliable real-time operation of simplex
networks, design criteria and protocols to set-up an abstract network fulfilling An3 are presented
next, as applied to the CAN bus.

First, one must recover from all conditions leading to partition. Thus, recovering from physical
– mechanical or electrical – partition by means of medium and physical layer redundancy is
required. For example, this is assured in standard FDDI, through a dual-reconfiguring ring,
capable of surviving one interruption of the ring [2]. In other networks, without standardised
redundancy provisions, some similar measures should be custom-implemented. For example, in
[14] it is described a glitch-free method for real-time switch-over between buses of a dual-media
token-bus.

Afterwards, one needs to show that all the recovery glitches are time-bounded and determine
the upper bound. Those include operating situations intrinsic to each network (e.g. addition
of a new member to a logical ring) and recovery actions resulting from failures (e.g. physical
reconfiguration subsequent to ring breakage). Boundedness of recovery glitches will be thoroughly
discussed, later in this paper. To illustrate the required procedure, we reserve Section 4 for an
inaccessibility analysis of the CAN. A comparison between CAN and other LANs inaccessibility,
addressed in previous studies [9, 11, 12], will also be discussed.

Finally, inaccessibility must be included in the timeliness model. Let us consider a system only
with local clocks (timers), used to implement timeouts. Timeouts detect timing, omission and
crash failures in the abstract network protocols. They can also be used by upper-layer protocols
to perform surveillance of remote parties, upon waiting for the reply to a request (e.g. RPC . ).
Inaccessibility must be accounted for in the calculation of real execution times (for real-time
processing purposes) and in dimensioning of timeouts.

According to An3, in an interval of concern, ���"! , there may be at most / inaccessibility periods
adding-up to at most � (0)�* . Let us assume that � �1! is the longest protocol execution duration.
Calculation of real worst-case execution times of any protocol simply implies that � (�)�* be added to
the worst-case protocol execution time expression computed under normal conditions (i.e. without
inaccessibility).

Timeout values are set in function of execution times. Low-level and upper-layer protocol
timers must in general include ��(0)�* , or else they could timeout too early should inaccessibility
occur, which may lead to protocol failure. At this point, note that incorporating � (�)�* in the timeout2

Remote Procedure Call.
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values is a sufficient condition for running synchronous (real-time) timeout-based protocols over
the abstract network. Protocols that do not use timeouts may require additional measures [16].

However, � (�)�* may be much greater than � &3! , causing the timeouts to be undesirably long. A
solution taking away inaccessibility from the timeouts would be welcome, with two obvious ad-
vantages: giving the programmer the simple and elegant abstraction of a distributed environment
which is always connected; yielding shorter timeouts. Two engineering techniques making this
possible, presented in [16], are re-iterated here.

TIMER-FREEZING MECHANISM

The mechanism proposed to hide inaccessibility is very simple. It concerns all timeouts con-
trolling timeliness of remote interactions, be them in low-level or upper-layer protocols. The value
of the timeouts does not include inaccessibility. The mechanism is based on stopping (freezing) all
timers when inaccessibility is detected and while it lasts, and restarting them when the network
becomes accessible again.

All protocols can then be constructed as if the network were always accessible. The worst-case
frame transmission time in all situations, from the programmer or protocol designer’s point of
view 4 , is merely the maximum queue plus access plus transmission delay, �'&�! , expected in the
absence of inaccessibility. This yields an optimal sizing of timers, with regard to detection of other
errors, such as omission and node failures.

On the other hand, worst-case timeliness calculations, i.e. determining the real duration of
activities, are tuned by adding � (0)�* – which must be determined for each specific network – to the
computed protocol execution time expressions.

Freezing the timers is an engineering issue, which implies: inaccessibility to be detected by
the communications adapter part; information between the adapter and the timers to flow quickly
enough; timers to be stopped/resumed on arrival of in-/accessibility notifications.

While this mechanism can be easily implemented on specially built hardware, the conditions
named above are not always met in existing hardware/software platforms. Namely: the timer
package may not have the functionality for lightweight start-restart; some LAN controllers do not
signal all inaccessibility situations, or do not do it consistently at all nodes.

INACCESSIBILITY TRAPPING MECHANISM

Since implementing inaccessibility control in existing environments is a requirement, an alter-
native had to be seeked. We devised a mechanism which masks inaccessibility at the network
interface level. It merely requires fulfillment of the following system requirements:

i) in the interface with the abstract network, all requests are positively confirmed when the
frame is transmitted;

ii) in a layered architecture: the higher-level request is also confirmed; the low-level confirma-
tion that the request was served propagates up the layers;

iii) timers to control a remote request are only started after the confirmation that it was issued.

If the network becomes inaccessible, it refrains from providing service, and confirmations do
not come. Let us discuss the implications of this fact in system activity by following the several
situations depicted in Figure 1, where timer �65879/;:=<?>A@CBD:�> equals the desired waiting time at any
level of the system (to receive a RPC result, or a transmission reply) that, as in the previous method,
do not include inaccessibility:E

I.e. for the sake of dimensioning timeouts.
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Abstract Network

User Interface
request

send

retry
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TwaitRemote

~~~~~~ <-- Through system layers -->

t_out

 Inaccessibility

~~

Figure 1: Timing of the Inaccessibility Trapping Mechanism

Situation (1): since a remote interaction is started by a send request, a timer controlling it at
whatever level will be pending of the confirmation from the network. Should it be inaccessible,
timer start will be postponed until the network becomes accessible again.
Situation (2): after the timer is started, it will count up to �GFGH��JI�KMLONQPRI�L . In this situation, the
network becomes inaccessible after the timer is started and accessible again before it expires. If
there is not enough time for the remote frame to arrive, the timer will expire.
Situation (3): inaccessibility lasts beyond �GFGH���I�KMLSNTPRI�L , but ends before anything is attempted
in order to recover. A timeout is issued here as well.

Situations (2) and (3) are analogous. They are not disturbing: the timer is there to detect
these facts. Inaccessibility has just been transformed into an omission. Given An1 and An3,
whatever methods used to take care of U omissions at a given system level, will keep working forVXW UZY[/ ( / - number of inaccessibility occurrences in a known interval, see An3). This means
that inaccessibility is in fact masked out of the system algorithms above the abstract network. In
fact, the system programmer can be given the consolidated

V
omission bound figure.

Note the very little difference between the effect of inaccessibility in situations (2) or (3), and
that of a slightly longer LAN access time. In fact, “inaccessibility” would not be needed for this,
it would suffice to make timers a little longer. However, this approach is justified by a bi-modal
network characteristic, with the more serious inaccessibility situations lasting much longer than� &3! and thus �8567�/\:�<?>A@CBD:=> . That is the case of:

Situation (4): inaccessibility still lasts when recovery is attempted (the second send request).

The protocol failures due to short timers [16] we have mentioned earlier, occur because the
protocols might proceed during an inaccessibility period. In order for this mechanism of short
timers and transforming inaccessibility into omissions to work, it is necessary that each inaccessibility
period is seen as one “omission”. The confirmed send request performs this role, preventing the
protocol from proceeding until the period ends: each inaccessibility period is therefore trapped
inside two consecutive transmission send/confirmation signal pairs issued at the abstract network
interface. Note also why the duration of inaccessibility does not affect system timers: it is either
simultaneous with the �85679/;:�<?>D@CBD:�> period, or with the request-to-confirmation period.

On the quantitative side, execution times are not increased by �'(�)�* anymore when faults occur
(the case with including � (�)�* in the timer values). Besides, when inaccessibility occurs, in lieu of
increasing by � (�)�* , they increase at most by : (�)�* (the effective duration, which may be much lower
than � (�)�* ).
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The disadvantage with regard to the timer freezing scheme, which “stops” the time in this part
of the system, is that timeouts do occur due to inaccessibility, and recoveries have to be initiated.

4 CAN Inaccessibility Analysis

This section will be entirely devoted to a detailed study of CAN inaccessibility, extending the
results advanced in [10]. The analysed scenarios are the causes for inaccessibility foreseen in the
standard specification and this procedure allow us to show that glitches in CAN operation are
time-bounded and determine the corresponding upper bound.

The Controller Area Network (CAN) is a broadcast bus with a multi-master architecture [3].
The transmission medium is usually a twisted pair cable. The network maximum length depends
on data rate. Typical values are: 40m @ 1 Mbps; 1000m @ 50 kbps.

Bit transmission takes two possible representations: recessive, which only appears on the bus
when all the nodes send recessive bits; dominant, which needs only to be sent by one node to stand
on the bus. This means that a dominant bit sent by one node can overwrite recessive bits sent
by other nodes. This feature is exploited for bus arbitration. A given bit-stream is transmitted
using the NRZ ] code. Data transmission is subject to a bit-stuffing technique that prevents more
than five consecutive bits of identical polarity to be transmitted, through automatic insertion of a
complementary bit.

Accordingly with CAN terminology, data to be transferred is encapsulated within “commu-
nication objects”: a unique identifier is assigned to each communication object. The Controller
Area Network [3] is a carrier sense multi-access with collision avoidance network: nodes delay trans-
missions if the serial bus-line is in use; when a bus idle condition is detected, any node may
start transmitting; bus access conflicts are resolved through comparison of communication object
identifiers and work as follows:

– while transmitting a communication object identifier, each node monitors the serial bus-line;
– if the transmitted bit is recessive and a dominant bit is monitored, the node gives up from

transmitting and starts to receive incoming data;
– the node transmitting the object with the highest identifier goes through and gets the bus.

That means: arbitration is non-destructive, since transmission of the highest identifier object
undergoes no delay; bus access has priorities, allowing transmission of more urgent data to
takeover less urgent one. Automatic retransmission of a communication object is provided after a
loss in an arbitration process. For our purposes, two important parameters characterise the basic
operation of any CAN network:^ Data Rate - The nominal rate of data signalling, on the bus. It gives a meaning to I"_ ��� , the

nominal duration of a single bit.^ Intermission Field Period - I�`=acb - The minimum bus idle period that mandatory precedes any
data or remote frame transmission.

Only four types of protocol data units are used by CAN. Their functions are described next:^ Data Frame - used for dissemination of communication objects. It begins by an header, that
includes the arbitration field, followed by the data, CRC d and trailing fields.^ Remote Frame - to explicitly request the dissemination of a communication object. For the
same identifier, the data frame takes precedence over the remote transmission request.e

Non-Return-to-Zero.f
Cyclic Redundancy Code.
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^ Error Frame - used for error signalling. It is simply made from an error flag, followed by an
error delimiter.^ Overload Frame - used to extend the interframe spacing, upon detection of overload conditions.
It is simply made from an overload flag plus an overload delimiter.

Frame Symbol Duration gihcjSk
min. max.

Data frame I �=�=�3� 44.0 132.0
Remote frame I �=���1��� 44.0 52.0
Error frame I=l �m��n\� 14.0 20.0
Overload frame I=n;opnm�R� 14.0 20.0

Table 2: Duration of CAN frames (Data Rate = 1 Mbps)

The integrity of data and remote frames is checked at each receiver by resorting to a CRC 15-bit
sequence, particularly well suited to check the integrity of frames with a total bit length less than
127, thus providing a good error detection coverage (see [3], for further details). CRC generation
and bit-stuffing operations are only performed over data and remote frames, but do not include
the fixed form sequence that ends both these frames: the 1-bit CRC delimiter; the 1-bit acknowledge
slot plus the 1-bit acknowledge delimiter; the seven-bit end-of-frame delimiter.

These were the details on CAN operation [3] required ahead for our analysis. Additional issues
will be brought-up as necessary.

Accessibility Constraints

The study of CAN inaccessibility is presented next. We start with very simple situations that
then evolve to less restrictive – and thus more realistic – operating conditions/fault assumptions.
Unless stated otherwise, we assume all the nodes are in the so-called active state [3], thus being
fully able to participate in error detection/signalling activities. For most of the cases, we explicitly
derive best and worst case figures, that we signal with superscripts q;r and str , respectively.

BIT ERRORS

Let us start our analysis of CAN inaccessibility by considering that bus operation is disturbed
only once, through the corruption of a single bit within a bit-stream, for instance, due to electro-
magnetic interference. Globally, both transmitting and receiving nodes cooperate in the detection
of deviations from normal bus operation.

Transmitter-based error detection aims to supply each sending node with the mechanisms
required to detect single-bit modifications, in its own transmitted bit-stream. Such error detection
technique lays down on serial bus-line monitoring, performed on a bit-by-bit basis, while trans-
mitting. A recessive level issued on the bus, by a given transmitter, can only be overwritten by a
dominant level, without that be considered an error, in the following two circumstances:u inside the arbitration field, where such an event will be interpreted, by the recessive bit

sender, as a loss in an arbitration process;u during the acknowledge slot, meaning that the previously transmitted data stream has
been heard without errors, at least by one node in the system.
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Otherwise, should the monitored level differ from the one transmitted, it will be considered an
error. Upon its detection, the error will be signaled on the bus, by starting the transmission of an
error frame at the next bit slot.

Bit error detection, as performed by a transmitting node, can take place as soon as the first
bit of a data frame is being transmitted. Therefore, the best-case error detection latency equals
bit-time, which added to the best time required to signal the error gives the corresponding network
inaccessibility duration:

: q;r(0)�*wv q;x �=� W : q ( & Yy: q;rx �=�"z{� Y|:�}=~�� (1)

On the other hand, corruption of the transmitted bit-stream cannot occur latter than trans-
mission of end-of-frame delimiter last bit. The worst-case inaccessibility time, is obtained when
considering the transmission of a data frame with maximum size. Its value is expressed through
equation:

: s�r(�)�*�v q;x �=� W : s�r! * & * Y|: s�rx �=�"zm� Y|: }=~�� (2)

This transmitter-oriented error detection scheme contributes for the reduction of the average
network inaccessibility time, since is designed to detect errors immediately upon their occurrence.
It provides an effective answer for the treatment of errors that manifest their effects in sets of nodes
that also include the sender. However, it is helpless in the detection of errors affecting only sets of
receiving nodes. Thus, the CAN access method includes several receiver-oriented error detection
mechanisms, to be discussed next.

BIT-STUFFING ERRORS

As mentioned earlier, in the opening remarks of this section, transmission of data and remote
frames bit-streams is performed, until the end of their 15-bit CRC sequence, by resorting to a
bit-stuffing coding and data transparency scheme.

Thus, frame reception entities must monitor such bit-stream, providing the required bit-
destuffing and error detection functions. Whenever a receiving node monitors �m�\&i�A�A� consecutive
bits of identical level, it automatically deletes the next received (stuff) bit. Under error free oper-
ation, the deleted bit presents a polarity opposite to the preceding ones; should this condition be
violated, an error will be signaled on the bus, by starting the transmission of an error frame. The
earliest moment, within a given bit-stream reception, where a bit-stuffing error can be detected is
while sampling the bit following the first � �;&��A�A� bits of each frame. Therefore, the best-case duration
of an inaccessibility period, due to a bit-stuffing error, is given by equation:

: q;r(�)�*wv �\&i�A�A� W�� � �;&i�A�D� Y[�A���S: q ( & Yy: q;rx ���"z{� Y�:�}1~ � (3)

On the other hand, a bit-stuffing error cannot occur after reception of the 15-bit CRC sequence.
The worst-case inaccessibility duration, for this particular scenario, must consider the transmission
of a maximum size data frame. Having both these aspects in mind:

: str(�)�*wv �\&i�A�A� W : str! * & *�� :m� ~ � Yy: strx ���"z{� Y|: }1~ � (4)

where :m� ~�� , accounts the duration of the fixed form sequence – not subject to bit-stuffing coding
– that ends every data or remote frame.

Bit-stuffing errors can be due to some kind of bit corruption, occurring in a way that a sequence
containing more than the allowed �;�;&��A�A� consecutive bits of identical polarity, is generated. This
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type of errors are always detected by bit-stuffing monitoring. However, the same kind of interfer-
ence may falsify one or more bits in the sequence that has originally led to stuff bit insertion. In
this case, bit-stuffing monitoring only reacts to the presence of the fault if the non-removal of the
stuffed bit leads to a later bit-stuffing error. Otherwise, the error will be detected only when the
end of frame sequence is received, either by CRC checking or through detection of a frame format
violation.

CRC ERRORS

The CAN protocol uses a 15-bit CRC sequence plus a 1-bit CRC delimiter, transmitted with
each data and remote frames, to check correctness of information transfer. After checking frame
correctness, a receiving CAN node should take into account that:u if the frame has been heard without errors, this condition should be signaled to the

transmitter, by changing the bus level from recessive to dominant, during the acknowl-
edge slot � .u otherwise, the receiving node should take no action during the acknowledge slot. The
detected CRC error is signaled on the bus through the transmission of an error frame,
but this action only starts at the bit following the acknowledge delimiter.

The corresponding inaccessibility time is generically given by expression:

:m(�)�*�v r � r W : ! * & * � : ��� ~CY�: x �=�"zm� Y�:=}=~�� (5)

where :{��� ~ represents the duration of the end-of-frame delimiter.
The best and worst-case bounds of equation (5) are obtained considering, respectively, the

transaction of the shortest and of the longest data frames, as well as error frame variability.

FORM ERRORS

All the frames used by the CAN protocol obey to a few pre-defined formats. For data or
remote frames, the origin of the frame ending sequence is established taking into account the
length specified in the control field [3]. The fixed form sequence that ends both these frames
includes specific elements, transmitted on the bus with a recessive level and whose value should
not be changed by any other node in the system. These elements are:

– the CRC delimiter,
– the acknowledge delimiter,
– the end-of-frame field, transmitted as a sequence of seven consecutive recessive bits.

Likewise, error and overload frames ending delimiters also obey to a fixed form rule: a
sequence of eight consecutive recessive bits should follow the last dominant bit of error and
overload flags. Violation of those frames fixed form usually only occur as a consequence of
multiple errors, happening within a given time period. So, their study will be postponed to less
restrictive scenarios, where such behaviour is allowed.

Under a single-fault assumption, one needs to consider only the violation of data and remote
frames fixed form ending sequence. In the best-case, such errors can be detected while receiving�

Ahead, we will discuss what happens when all the nodes in the system detect a CRC error, thus binding the
acknowledge slot value to its transmitted recessive level.
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the 1-bit CRC delimiter of a minimum size data frame. The corresponding inaccessibility period is
given by:

: q;r(�)�*wv �Dzm�=� W : q;r! * & * � :m� ~ � Y�: q ( &cY|: q;rx �=�"z{� Y�: }1~ � (6)

Conversely, a form error may occur, at the latest, while receiving the penultimate bit of the
end-of-frame delimiter, because a receiver monitoring a dominant level at the last bit of this delimiter
does not take that as a form error �{� . Evaluation of the worst-case inaccessibility time, for this
particular scenario, must considerer the transaction of a maximum size data frame. With that
understood:

: str(�)�*�v �Az{�=� W : s�r! * & * � : q ( & Y|: strx �=�1z{� Y|:=}=~�� (7)

ACKNOWLEDGE ERROR

All CAN nodes receiving a data or remote frame without CRC errors should signal this con-
dition to the sender, by transmitting a dominant bit level on the bus, during the acknowledge slot.
This action should be performed regardless of the acceptance filter test result, i.e. signalling is due
either when the frame is about to be discarded, on account of a reject result, or when it is to be
actually accepted and delivered to network user-level entities.

Whenever a transmitter does not monitor a dominant level on the bus during the acknowledge
slot, it interprets that as an error, and the transmission of an error frame is started at the next bit. So,
the duration of the corresponding network inaccessibility period is generically given by equation:

: (�)�*�v8* r;� W :=! * & * � :m� ~�� Y����": q ( &�Y|: x �=�1z{�GYy: }=~�� (8)

As in a previous scenario, the difference between best and worst-case bounds depends only on
the variability of data and error frame durations.

In the presence of multiple bit disturbances, it may happen the sender monitors a falsified
dominant level, during the acknowledge slot, instead the correct recessive level, binded on the bus
as a consequence of former CRC errors, detected by all the nodes in the system. The transmitting
node lacks to detect such error, but bus operation disturbance will be signaled anyway, as a CRC
error, by receiving nodes not acknowledging frame reception.

OVERLOAD ERRORS

For correct operation, the CAN protocol requires data and remote frames to be separated from
each other and from any other frame by a minimum amount of three recessive bits, known in
CAN terminology as intermission field. However, the next data or remote frame transmission can
be explicitly delayed, whenever the receiver circuitry is not ready to receive those frames.

That is achieved through transmission of a special data unit known, in CAN terminology, as
requested overload frame. Transmission of such frame is only allowed to be started at the first bit
of an expected intermission and, at most, two overload frame transmissions may be consecutively
requested, in the sequence of the same data or remote frame reception. Taking into account the
facts laid above, the corresponding lower and upper inaccessibility bounds, is simply given by:

: q;r(�)�*�v z=�pz * ! W : q;rz���z * ! (9)�i�
As we will see ahead, this will be considered a reactive overload error. On the other hand, we assume that whenever

the transmitter monitors this same event, it will be interpret as a bit error.
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: s�r(�)�*�v z���z * ! W �?�S: strz=��z * ! (10)

REACTIVE OVERLOAD ERRORS

There is another use foreseen in the CAN specification for overload frames. It concerns the
signalling of certain error conditions. Transmission of the so-called reactive overload frames are
due whenever a dominant bit is detected either within the intermission field or at the last bit of the
end-of-frame delimiter. Signalling of such CAN protocol violations is always started one bit after
its detection.

The best-case inaccessibility bound assumes that the transmission of a single overload frame
is started at the first bit of the expected intermission field, thus:

: q;r(�)�*�v �1z=��z * ! W : q;rz=�pz * ! (11)

On the other hand, the disturbance causing the reactive overload frame transmission may be
only detected at the third bit of the intermission field. In the presence of single disturbances, the
corresponding worst-case inaccessibility bound will be given by:

: s�r(�)�*�v �"z���z * ! W : strz=��z * ! Y�: }=~�� (12)

OVERLOAD FRAME FORM ERRORS

As aforementioned, the CAN protocol signals the absence of a minimum bus idle period,
preceding the transmission of data and remote frames, through the issuing of an overload frame.

The CAN receiver detecting the overload condition starts, at the next bit slot, the transmission
of an overload flag, consisting of six dominant bits; all other nodes will react to this action, and as a
consequence, also initiate the transmission of an overload flag.

After transmitting its own overload flag each CAN node monitors the bus-line until a transition
from a dominant to a recessive bit level is detected. Under normal circumstances �"� , such an event
means that the first of an eight-bit overload delimiter has just been issued. All CAN nodes will then
transmit the remaining seven recessive bits of the fixed form overload delimiter.

Should a CAN node detect any deviation from the aforementioned overload frame fixed form,
it will be considered an error and accordingly with the CAN protocol, the transmission of an error
frame is started at the next bit slot.

The best-case inaccessibility bound for this particular scenario is obtained under the assumption
that overload frame fixed form violation occurs at the first transmitted bit. Therefore:

: q;r(�)�*�v z��Dz{��� W : q ( &cYy: q;rx �=�"z{� (13)

On the other hand, for the evaluation of this scenario worst-case inaccessibility bound, we
considerer the transmission of two consecutive overload frames, with the fixed form violation
occurring only at the last bit of the overload delimiter transmitted in second place. The corresponding
inaccessibility time is then given by:

: s�r(�)�*�v z��Dz{��� W : str(�)�*wv z=�pz * ! Yy: s�rx �=�"z{� (14)�;�
That is, assuming the recessive level does not result from bit corruption.
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INCONSISTENT OVERLOAD ERROR

In this scenario we considerer that only a subset ��� of all the nodes in a given CAN network
detect, either correctly or erroneously, a dominant level in the third bit of the intermission field.

The set of nodes detecting such event initiate then the transmission of a reactive overload frame,
but this action will be perceived in a different manner by the set of nodes that did not monitored
the intermission field violation, because the first of the six dominant bits that made up the overload
flag will be interpreted as a start-of-frame delimiter, by such nodes.

Under the assumption that the entire overload flag is correctly received by all network nodes,
the sixth dominant bit will violate the bit-stuffing rule and cause an error condition signalling. In
these circumstances, the inaccessibility time for this scenario equals the one given by equation (3):

: q;r(�)�*�v�( �pz * ! W�� ���\&i�A�A�MY[�A�'�O: q ( &cY�: q;rx �=�1z{� Y�: }=~�� (15)

In a less favourable fault scenario, some bits within the overload frame may also get corrupted.
Under such circumstances, there are no guarantees that bit-stuffing monitoring is able to detect
the disturbance in bus operation, since a sequence containing more than �m�\&i�A�A� consecutive bits of
identical polarity, may never be received by the relevant CAN nodes. Nevertheless, as pointed out
before in this paper, the error will still be detectable either by CRC checking or through detection
of a frame format violation.

For the evaluation of the worst-case inaccessibility time for this scenario, we take the largest
of those error detection bounds and additionally assume that the inconsistency in intermission field
monitoring only occurs after the extension of the interframe space trough two consecutive requested
overload frames. Therefore:

: str(�)�*wv�( �pz * ! W �?�S: s�rz=�pz * ! Y|: str! * & * � : q ( &cYy: strx ���"z{� Y�: }1~ � (16)

MULTIPLE CONSECUTIVE ERRORS

As previously mentioned, CAN nodes signal errors through the transmission of an error frame:
as soon as a node detects an error condition it starts transmitting an error flag, consisting of six
consecutive dominant bits; all other nodes will react to this action, and in consequence, also initiate
the transmission of an error flag. After transmitting its own error flag each CAN node monitors the
bus-line until a transition from a dominant to a recessive bit level is detected. In the absence of
further errors, this means that the first of an eight bit error delimiter has just been issued. All CAN
nodes will then transmit the remaining seven recessive bits of the fixed form error delimiter.

For most of the scenarios we have analysed so far, disturbances in CAN bus operation have
been restricted to single errors. The bounded omission degree (An1) assumption, defined in
Section 2, allow us to withdraw this restriction, by establishing an upper-bound for inaccessibility
duration, when in the presence of multiple errors: no more than � error and/or reactive overload
frame transmissions are required to recover from errors � � .

Furthermore, let us assume that all the � errors are consecutive in the network � + . In this
case, error signalling will also be subject to disturbances: any node detecting a deviation from
the error frame fixed form, starts the transmission of a new error frame. Deriving the best-case
inaccessibility bound, under these conditions, assumes that errors, in the forerunner data frame�i	

This subset may be restricted to a single node.�i

Under given circumstances, CAN data frame losses are masked-off at the MAC layer, thus rendering the user-level

omission degree bound,   , different from the network-level omission degree bound, ¡ .�i,
Meaning they are not interleaved with good transmissions.
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and in the subsequent error flag, are both detected at the first transmitted bit; a second error frame
is correctly received by all CAN nodes. In consequence:

: q;r(�)�*wv � r;x �=� W �?�S: q ( &tY|: q;rx ���"z{� Y|: }1~ � (17)

Conversely, for the worst-case scenario, we consider that the first error occurs at the end of a
maximum length data frame transmission and that the following

� � � �A� errors are only detected
at the end of a maximum duration error signalling period. The recovery actions end with the
successful transmission of the � &�¢ error frame. The time elapsed in these operations is given by:

: s�r(0)�*wv � r;x �=� W : s�r! * & * Y£�¤��: s�rx �=�"z{� Y|: }=~�� (18)

MULTIPLE SUCCESSIVE ERRORS

Let us now assume that errors occur in a way that only data or remote frame transmissions are
affected; the corresponding error signalling, always succeeds. This scenario is realistic enough to
be considered: a failure in a transmitter may lead to this behaviour.

The corresponding worst-case inaccessibility bound directly results from application of An1,
taking into account the worst-case durations of data and error frames:

: str(�)�*wv �M� x �=� W �C� � : str! * & * Y|: s�rx �=�"z{� Y�: }=~�� � (19)

ERROR CONFINEMENT MECHANISMS

The error confinement mechanisms provided by the CAN protocol are based on two different
error counters, that at each node, record transmit and receive errors. These counters have a non-
proportional update method, with each error causing a counter increase larger than the decrease
resulting from a successful data or remote frame transfer. Details on Transmit and Receive-Error-
Count update procedures can be found in [3].

The rules used in error counting have been defined in order that nodes closer to the error-
locus will experience, with a very high probability, the highest error count increase. This way,
disturbances due to a faulty node can be localised and their influence restricted:

Error-Active - the normal operating state. Such a node is able to transmit and receive frames
and in both operations fully participates in error detection/signalling activities.

Error-Passive - the node is still able to transmit and receive frames, but: after transmitting a
data or remote frame the node requires an extra eight bit bus idle period following the
intermission field, before it can start a new transmission �m¥ ; error signalling is performed
through transmission of a passive error flag, made up of six recessive bits, instead the
normal active error flag.

Bus-Off - a node in this state does not participate in any bus activity, being unable to send or
receive frames.

In order to complete our analysis of CAN inaccessibility, we proceed with the study of two
examples, where the occurrence of permanent failures is assumed.�i2

An action known in CAN terminology as Suspend Transmission. If during this period another node starts transmit-
ting, the suspended CAN node will become receiver of that frame.
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FAILED TRANSMITTER

Let us analyse in first place, a scenario where the transmitter of a given error-active CAN node
fails in a way that errors only affect the data and remote frames it sends. Such selective error
pattern may be due, for instance, to a malfunction in the node’s CRC generator.

Accordingly with the aforementioned error confinement policies: the transmitter failure may
only systematically affect bus activity until the node enters the error-passive state; the number of
transmission attempts causing this transition is bounded by:

�¦&i§A� *"( � W©¨ >Aª�ªD* &�¢w!« &i§ x �=�Z¬ (20)

where ¯® represents the ceiling function � 4 ; >Dª�ª * &�¢w! is the error-active count threshold and
« &i§ x �=�

accounts the Transmit-Error-Count increase produced by each transmission error [3].
Consecutive transmissions issued by the failed transmitter appear in the network interleaved

with error frames and occasionally with good transmissions from other nodes. The longest
inaccessibility period occurs in the absence of these last events and is obtained applying expression
(20) to equation (19):

: s�r(0)�*wv &�§A� *R( � W �c&�§A� *R( �� � : s�r! * & * Y|: s�rx �=�"z{� Y�: }1~ � � (21)

FAILED RECEIVER

When an error-active CAN receiver is affected by a similar failure, i.e. a malfunction in the
CRC checker, errors are also successive in the network because, once again, only data and remote
frame transfers are affected; error signalling succeeds without errors. However, any data/remote
transfer does not succeed until the defective node becomes error-passive, which occurs after the
following attempts:

�c�=§A� *"( � W ¨ >Aª�ª * &3¢w!« �=§ x � � Y « ��§ x � � ¬ (22)

where the terms under the fraction represent two different contributions for Receive-Error-Count
increase. They derive from the application of more than one error counting rule to the same
data transfer, as defined in [3]. The time required to recover the network is thus obtained using
expression (22) in equation (19). Thus:

: s�r(�)�*�v �=§A� *R( � W �c�=§A� *"( ��� � : s�r! * & * Y�: s�rx �=�"z{� Yy: }=~�� � (23)

5 Analytic results and comparison with other LANs

For consolidation of our study regarding accessibility constraints we now evaluate inacces-
sibility time bounds, for a given CAN network, for example, a 32 node CAN field-bus, in an
industrial environment, for real-time sensing and actuating. The data rate is �A°²±=³¦´ and we as-
sume a moderate value ( � W�µ

) for the omission degree bound due to medium errors. The results
of the evaluation, for each one of the studied scenarios, are summarised in Table 3. We see that,
exception made to the rather serious transmitter or receiver failures, inaccessibility is limited to¶¸·¸·�¹ ´ . While the figure is not high, it may come as a surprise, if compared with performance�iE

The ceiling function º�»�¼ is defined as the smallest integer not smaller than » .
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studies not concerned with fault-tolerant operation of the CAN bus. To achieve reliable hard real-
time communication in CAN, the worst-case figure of table 3 must be included in the timeliness
equations of the mechanisms presented in Section 3.

Data Rate - ½O¾�¿\À�jÁ�Â LOÃ�H�Äw�3P Im�����Mg�hcjOkNT�3ÃtÅ NTH�Æ¦Å
Bit Errors 18.0 155.0
Bit-Stuffing Errors 23.0 145.0
CRC Errors 54.0 148.0
Form Errors 52.0 154.0
Acknowledge Errors 53.0 147.0
Overload Errors 14.0 40.0
Reactive Overload Errors 14.0 23.0
Overload Form Errors 15.0 60.0
Inconsistent Overload Errors 23.0 194.0
Medium Consecutive Errors ( ÃQÇÉÈ ) 19.0 195.0
Medium Successive Errors ( ÃTÇ|È ) - 465.0
Transmitter Failure - 2480.0
Receiver Failure - 2325.0

Table 3: CAN Inaccessibility Times

The inaccessibility analysis we have just presented provides a better understanding of CAN
performance in the presence of failures, providing guidance on how to justifiably achieve better
performability and thus, better respect of bounded delay requirements. The figures derived should
be taken as corrective terms for computing transmission delays in various situations.

In this sense, it will be interesting to compare the inaccessibility figures obtained for CAN with
the ones obtained in previous studies [9, 11, 12], regarding real-time LANs with the same number
of nodes. These results are summarised in Table 4 where, for each LAN, we have listed, along with
best and worst-cases, a relevant set of other scenarios.

The main conclusion is that CAN displays inaccessibility durations much lower than any other
real-time LAN.

6 Conclusions

To achieve reliable real-time operation on a given network, a bounded delay requirement must
be met. Usually this analysis is performed by computing worst-case access/transmission delays,
for normal network operation. However, achieving the bounded delay requirement for hard
real-time communication means, amongst other factors, ensuring continuity of service. Networks,
CAN included, are subject to failures: if these are not controlled, the above mentioned requirement
is not met.

While the common solution lies in fully-replicating the network, and thus ensuring that at
least one of the replicas meets the normal no-fault bounds, field buses such as CAN are aimed at
unexpensive solutions, which should avoid replication. In this paper, we presented an alternative
solution based on simplex CAN networks.

The main problem with this approach is inaccessibility: partitions, of physical and virtual
nature, impair the network timeliness. Recovery from these situations takes time, and that is often
disregarded by designers when expecting hard real-time behaviour from a system.
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Ê �t79�;Ë�´D>A$9ÌGÍw>A�t79ª�/mB : (�)�* � @C´D�@C/{�Î� @C7�Ï'�
ISO 8002/4 Token-Bus (

¶ °²±=³¦´ )
Station Join 0.07 4.67
Multiple Joins 0.37 135.72
Station Leave 0.06 0.06
Token Loss 1.74 5.90

ISO 8002/5 Token-Ring ( Ð�°Ñ±=³c´ )
Stripping Errors 4.6 4.7
Token Loss 14.6 14.7
Active Monitor Loss 1044.9 15068.4
Station Join/Leave 14.6 14.7
Streaming Receiver 28255.2 28278.3

ISO 9314 FDDI ( � ·¸· °Ñ±=³c´ )
No Valid Transmissions 2.53 2.76
No Valid Tokens 15.03 15.26
Station Join 30.03 30.24
Station Leave 20.03 20.24
Streaming MAC Receiver 9457.18 9457.33

Table 4: LAN Inaccessibility Times

We have shown how to embed inaccessibility in the communication model of CAN, so as to
tolerate such faults. Furthermore, we made an exhaustive study of CAN inaccessibility. Finally, we
derived figures for the several CAN inaccessibility situations, showing what the protocol designer
can count on, in absolute terms. On the other hand, when compared to several standard LANs,
CAN exhibits superior performability, in what concerns inaccessibility.
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