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Abstract

Continuity of service and bounded and known message delivery latency, are reliability re-
quirements of a number of real-time applications, such as those served by fieldbuses. The
analysis and design of such networks w.r.t. timing properties has, with few exceptions, been
based on no-fault scenarios, rather than under a combined performance and reliability perspec-
tive. We have shown in earlier works that the performability of fieldbuses in normal operation
is hindered by periods of inaccessibility. These derive from incidents in the protocol operation
that affect non-faulty components, leading to failures of the expected hard real-time properties
of the network.

This is specially relevant if the fieldbus supports critical control applications (e.g. avionics,
automotive). As part of our endeavor to design a CAN-based infrastructure capable of extremely
reliable communication, that we have dubbed CAN Enhanced Layer (CANELy), this document
provides a detailed analysis of CAN behavior in the presence of inaccessibility, discussing a
generic methodology to enforce system correctness in the time-domain, despite the occurrence
of network errors.

1 Introduction

Continuity of service and bounded and known message delivery latency are two fundamental
requirements of fault-tolerant real-time systems and applications. Fieldbus technologies, such as
the Controller Area Network (CAN), play nowadays a fundamental role in the design and imple-
mentation of embedded distributed systems. Those network infrastructures are expected to exhibit
reliable hard real-time behavior in the presence of disturbing factors such as overload or faults.

The major consequence of such disturbances on real-time communication is the error they
introduce in the specification of timing bounds, such as deadlines. Most analyses of message
transmission delays or of network schedulability assume the local area network (LAN) or fieldbus as
always operating normally. However, even if one excludes solid faults such as physical partitioning,
LANs and fieldbuses are subject to periods of inaccessibility. They derive from incidents in the
LAN or fieldbus operation that temporarily prevent communication and whose effect is to increase
the network access delay as seen by one or more nodes. This may lead to the failure of task or
protocol timing specifications and ultimately, to the failure of the hard real-time system.

As part of our endeavor to design a CAN-based infrastructure support for extremely reliable
distributed computer control, dubbed CAN Enhanced Layer (CANELy) we have been address-
ing the problem of fault-tolerant real-time communications on fieldbuses in a comprehensive way,
reviewed in Section 2 for completeness.

This document provides a detailed study of CAN with respect to inaccessibility and discusses
how to enforce system correctness in the time-domain, despite the occurrence of network errors.

*Instituto Superior Técnico - Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal. Tel: +351-218418397/99 -
Fax: +351-218417499. NavIST Group CAN WWW Page - http://pandora.ist.utl.pt/CAN.
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The report is organized as follows: Section 2 reviews relevant details of the CANELy architec-
ture; Section 3 presents the system model; the hard real-time operation of CAN is addressed in
Section 4 and the crux of the document, that is the control of CAN inaccessibility is discussed in
Section 5; a reference to related work (Section 6) and some final remarks (Section 7) conclude the
document.

The following discussion assumes the reader to be fairly familiar with CAN operation. In any
case, we forward the reader to the relevant standard documents [8, 5], for details about the CAN
protocol.

2 CANELy: a CAN-based Fault-Tolerant Real-Time Distributed
System

In the course of analyzing existing studies of CAN limitations with respect to the provision
of strict availability, reliability and timeliness attributes [9], we have realized that what was miss-
ing in the native CAN fieldbus to attain levels of dependability comparable to those of similar
technologies, such as the Time-Triggered Protocol [10], was indeed a set of fault tolerance and
timeliness-related services. Moreover, we have shown that these can be provided off-the-shelf (i.e.
without modifications to the CAN standard or to existing CAN controllers), through the use of
properly encapsulated additional software/hardware components. We call the materialization of

this concept CAN Enhanced Layer (CANELy).
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Figure 1: CAN Enhanced Layer architecture

The central component of the CANELYy architecture (Figure 1) is naturally the standard CAN
layer, complemented /enhanced with some simple machinery and low-level protocols, which include:
a network infrastructure resilient to physical partitioning [18]; a reliable communication protocol
suite, offering a set of broadcast/multicast primitives [20]; clock synchronization [16]; node failure
detection and membership services [19].

The objective of this report is to discuss the mechanisms and the techniques used in the CANELy
architecture to enforce system correctness in the time-domain despite the occurrence of network
errors, that is control of inaccessibility.



CAN Standard Layer

The CAN fieldbus is a multi-master network that uses a twisted pair cable as transmission
medium [8, 5]. The network maximum length depends on the data rate. Typical values are: 40m
@ 1 Mbps; 1000m @ 50 kbps. Bus signaling takes one out of two values: recessive (r), otherwise
the state of an idle bus; dominant (d), which always overwrites a recessive value. This behavior,
together with the uniqueness of frame identifiers, is exploited for bus arbitration. A carrier sense
multi-access with deterministic collision resolution policy is used. When several nodes compete for
bus access, the node transmitting the frame with the lowest identifier always goes through and gets
the bus. A frame is a network-level piece of encapsulated information. It may contain a message,
a user-level piece of information. In CAN, a data frame is used for that purpose. However, it may
consist of control information only, such as a remote frame.

The CAN standard layer is made from a CAN controller and the corresponding software driver
that includes the following primitives (cf. Figure 1): request the transmission (.req) of data (can-
data) or control (can-rtr) messages'; confirm to the user a successful message transmission (.cnf);
indicate a message arrival (.ind).

Basic Dependability of the CAN Protocol

The fault confinement mechanisms built in the native CAN protocol aim at restricting the
influence of defective nodes in bus operation. They are based on two counters recording, at each
node, transmit and receive errors, that is, omission errors causing frames not to be received at their
destinations. Most omissions are perceived consistently by the error detection mechanisms of all
nodes. However, some subtle errors can lead to inconsistency and induce the failure of dependable
communication protocols based on CAN operation alone [20]. Inconsistent frame omissions may
occur when faults hit the last two bits of a frame at some nodes?, which may cause: the message
to be accepted in duplicate by a subset of recipients; inconsistent message omission, if the sender
fails before retransmission. A thorough discussion of these failure scenarios can be found in [20].

Furthermore, the fault-confinement mechanisms themselves may be a source of inconsistency.
Inconsistent frame omissions may occur if a node is allowed to enter the so-called error passive
state, where it is able to transmit and receive frames, but can only signal errors while transmit-
ting. Other states for the node are: error active, the normal operating condition, where the node
is fully-integrated, being able to transmit/receive frames and to fully participate in error detec-
tion/signaling actions; bus off, where the node does not participate in any bus activity, being unable
to send or receive frames.

3 System Model

In this section, we enumerate our fault assumptions for the system and discuss the CAN prop-
erties that underpin our system model, as established in [20, 18, 17].

We introduce the following definition: a component is weak-fail-silent if it behaves correctly
or crashes if it does more than a given number of omissions — called the component’s omission
degree — in a time interval of reference [22].

The CAN bus is viewed as a single-channel broadcast local network with the following failure
semantics for the network components:

!Control messages are encapsulated in remote frames.
2The subset may have only one element. Examples of causes for inconsistent detection are: electromagnetic
interference or deficient receiver circuitry.



individual components are weak-fail-silent with omission degree f,;
failure bursts never affect more than f, transmissions in a time interval of reference?;

omission failures may be inconsistent (i.e., not observed by all recipients);

there is no permanent failure of the channel (e.g. the simultaneous partitioning of all redundant media
[18]).

The weak-fail-silent assumption can be enforced with high coverage for the CAN controller by
fault confinement mechanisms [20, 17]. This is important for the preservation of CAN timeliness
and for the parameterization of protocols operating on top of the CAN standard layer, such as
those specified in the CANELy architecture [20, 16, 19].

The CAN fieldbus has a medium access control (MAC) sub-layer that in essence exhibits the
same kind of properties identified in previous works on LLANs [22]. Then, on top of the basic MAC
sub-layer functionality, CAN has error-recovery mechanisms defining message-level properties that,
again, have the flavor of the logical link control (LLC) sub-layer in LANs. Next, we summarize a
relevant set of error detection/recovery and timeliness-related properties, at MAC and LLC levels.

CAN MAC and LLC properties

The upper part of Figure 2 enumerates a relevant set of CAN MAC-level properties, defined
in previous works [20, 17]. Property MCAN1 formalizes the effect of CAN built-in error detection
and signaling mechanisms, and it implies that frame errors are transformed in omissions. Most
frame errors are handled consistently by all correct nodes. The residual probability of undetected
frame errors is negligible [4]. Property MCAN2 maps the failure semantics introduced above onto
the operational assumptions of CAN, being k> f,. This property is crucial to achieve reliable hard
real-time operation of CAN-based infrastructures, CANELy included [17].

MA C-level properties

MCANT1 - Error Detection: correct nodes detect any corruption done by the network
in a locally received frame.

MCAN2 - Bounded Omission Degree: in a known time interval 7,4, omission failures
may occur in at most k transmissions.

MCANS3 - Bounded Inaccessibility: in a known time interval T}4, the network may be
inaccessible at most ¢ times, with a total duration of at most Tj,,.

MCAN4 - Bounded Transmission Delay: any frame queued for transmission is trans-
mitted on the network within a bounded delay of T; 4+ Tina.

LLC-level properties

LCAN1 - Bounded Inconsistent Omission Degree: in a known time interval 7,4,
inconsistent omission failures may occur in, at most, j transmissions.

Figure 2: Relevant CAN MAC and LLC-level properties

The behavior of CAN in the time-domain is described by the remaining MAC-level properties.
Property MCAN4 specifies a maximum frame transmission delay, which is Ty in the absence of

*For instance, the duration of a message broadcast round. Note that this assumption is concerned with the total
number of failures of possibly different components.



faults. The value of T;q includes the queuing, access and transmission delays. It depends on
message latency classes and offered load bounds [21, 25, 11] and in general it may also include the
extra delays resulting from the queuing effects caused by the periods where the network refrains
from providing service, although remaining operational (i.e. the periods of inaccessibility). The
bounded frame transmission delay naturally includes T;,,, a corrective term which accounts for
the worst-case duration of inaccessibility, given the bounds specified by property MCAN3. The
inaccessibility characteristics of CAN depend on the network alone and can be predicted by the
analysis of the CAN protocol [23].

Finally, at the LLC level, the failure modes that we have identified cause the message-level
properties of CAN to be somewhat different. While the omission failures specified by MCAN2 are
masked in general at the LLC level by the retry mechanism of CAN, the existence of inconsistent
omissions implies that some j of the k& omissions will show at the LLC interface as inconsistent
omissions [20, 17].

Property LCAN1 (cf. lower part of Figure 2) specifies then the probability of inconsistent
omission failures j, where j is normally several orders of magnitude smaller than k. Property
LCANI1 has been addressed in the design of the CANELy reliable communication protocol suite
[20, 16, 19].

4 Hard Real-Time Operation of CAN

Before attempting to obtain reliable hard real-time behavior out of a standard LAN or fieldbus,
CAN included, one has to stipulate the failure modes that must be taken into account. Thus, in
conformance to the discussion in Section 3, let us assume the following failure modes for CAN-
based systems: timing failures (delays) due to transient overloads; omission failures (lost frames)
due to transmission errors; network partitions (physical/virtual). In addition, let us assume that
the network channel is not replicated.

The following conditions must be observed to secure reliable hard real-time communication in

the CAN fieldbus [24, 23]:

RT1 - enforce bounded delay from request to transmission of a frame, given the worst-
case load conditions assumed (prevent timing faults);

RT2 - ensure that a message is delivered despite the occurrence of omissions (tolerate
omission faults);

RT3 - control partitioning.

Condition RT1 if met, assures that a frame is sent within a known time bound, even if it does
not arrive. Condition RT2 stipulates the tolerance to omission faults and ensures that a message
is delivered, even if that implies the transmission of several frames (using either time or space
redundancy).

Condition RT3 is related to the maintenance of connectivity between network nodes. Note
that partitioning can be tolerated with complete network replication, so one might wonder why
worry about inaccessibility glitches. At least two reasons make the approach worthwhile. Firstly,
network replication implies a more expensive infrastructure and more complex protocols. Since
partitioning typically affects the physical medium, a solution based on a simplex network with
dual-media, such as depicted in Figure 1, is extremely effective. Secondly, even with network
replication, inaccessibility affecting individual replicas would lower their fault coverage, that is, the
probability that each of them is correct (in the time domain). Thus, the mechanisms we present in
this document would also be applicable to individual replicas of a redundant network.



Achieving RT3 has its complexity, and requires the utilization of appropriate design techniques
[22]. The discussion of how to secure RT3 in CAN-based systems is the central issue of this report.
For completeness, we start by giving guidelines on how to achieve RT1 and RT2.

Enforcing Bounded Transmission Time

Enforcing condition RT1, i.e. securing an upper bound on frame transmission delay (property

MCAN4, in Figure 2), depends on:

e the offered load bounds, defining the temporal characteristics of message transmit requests
(e.g. interarrival time, message length and urgency level).
e the own functionality of the CAN fieldbus, which includes: the determinism of the MAC-level

mechanisms; the (global) scheduling of message transmissions, taking into account message
delivery constraints; network sizing and parameterizing.

The CANELYy architecture [17] is flexible enough to accommodate the use of a comprehensive set
of message scheduling techniques, such as those described in [21, 25, 11]. The low-level engineering
of such techniques should provide, at the interface with the CAN controller, adequate support with
respect to: the management of message buffers [17]; avoidance of priority inversion incidents [12].

Handling Omission Failures

The standard CAN protocol has been designed to enforce condition RT2 at the lower levels of
communication. Upon the detection/signaling of a frame error: the recipients discard the incorrect
frame; the sender automatically submits the same message for retransmission.

However, we have identified in [20] a set of subtle failure modes that may lead to an inconsistent
delivery of a message: a node in the error passive state detects an incorrect incoming frame and it
is unable to signal the error to other nodes; a sender fails, after the inconsistent dissemination of a
message and before message retransmission.

In the CANELYy architecture, the erratic behavior of an error passive node is avoided, by forcing
it to enter the bus off state, after the node has given a pre-specified number of omission errors,
prior to reaching the error passive state. This secures the weak-fail-silent assumption [17].

On the other hand, given that condition RT2 cannot be secured by the CAN protocol alone, the
CANELy architecture includes a software module (micro-protocol), built on top of the exposed CAN
interface, that ensures a given message is delivered, despite sender failure. The implementation of
this micro-protocol uses a diffusion-based technique that exploits property LCAN1 (cf. Figure 2)
to optimize the utilization of CAN bandwidth.

Controlling Partitions: Inaccessibility

Condition RT3 implies the control of the effects of network partitioning on the timeliness of
the system and applications. Our approach to this problem relies on a general inaccessibility
model, which allows to treat the effects of the different causes for partitioning in a uniform way
[24, 22, 23]. This is also true of physical partitioning, if the system has repair (e.g. medium
redundancy or reconfiguration) [22].

Let then a network be partitioned when there are subsets of the nodes which cannot communi-
cate with each other?.

*The subsets may have a single element. When the network is completely down, all subsets have a single element,
since each node can communicate with no one.



However, even in a physically connected network the occurrence of certain events in its operation
(e.g. entry or leave of nodes) or of individual failures (such as: bit errors; transmitter or receiver
glitches; node failures) may produce side-effects on the other nodes, which are a subtle form of
partitioning, virtual rather than physical. Standard LANs and fieldbuses have their own means of
recovering from these situations, but since this recovery process takes time, the network will exhibit
periods where service is not provided to some or all of the nodes. If such kind of (inaccessibility)
faults are not tolerated, timeliness of applications is at stake, which is not acceptable in a hard
real-time system.

The problem of inaccessibility was thoroughly equated in previous works on LANs and fieldbuses
[24, 23]. Its definition, in [24], is recapitulated next.

Inaccessibility:

i) a component temporarily refrains from providing service;
i) its users perceive thal state;
iii) the limits of the periods of inaccessibility (duration, rate) are specified;

iv) violation of those limils implies the permanent failure of the component.

The approach taken and the techniques used to tolerate inaccessibility faults will: allow a
set of temporary network partitions; stipulate limits for the duration of the resulting glitches on
protocol execution; require from the network components some self-assessment capability. Thus, it
is necessary to complement the LAN or fieldbus functionality [24], in order to:

e guarantee recovery from all conditions leading to partition (physical or virtual) in a
given failure scenario, i.e. reestablish connectivity among affected nodes;

e cnsure that the number of inaccessibility periods and their duration have a bound
and that it is suilably low for the service requirements;

e accommodate inaccessibility in protocol execution and timeliness calculations, at all
the relevant levels of the system.

This way, all partitions are controlled. Uncontrolled partitions are of course still possible,
because systems do fail, but that event means the total and permanent failure of the real-time
communication system.

5 Implementing Inaccessibility Control in CAN

This section is entirely dedicated to the discussion of how to control inaccessibility in CAN-based
systems. Without loss of generality, we address how the standard CAN error-handling mechanisms
can be combined with some simple protocol extensions and other resources (e.g. a timer agency),
being then integrated into efficient inaccessibility control methods. This has been accomplished
with success in the CANELy architecture [17].

5.1 Handling CAN Physical Partitions

In [18], we have presented an innovative and extremely simple scheme for handling CAN physical
partitions. The receive signals of each medium are combined in a conventional AND gate before
interfacing the MAC layer. This secures resilience to medium partitions and stuck-at-recessive
failures in the network cabling.

-~
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Figure 3: CAN Media Redundancy Mechanisms

The channel monitoring and media management modules, represented in Figure 3, implement
additional fault treatment functions, such as the provision of resilience to stuck-at-dominant fail-
ures. Those modules are connected through the set of signals that we have specified in [18], given

the observable behavior of CAN at the PHY-MAC interface:

e C'hgor, this signal is asserted at the end of each frame transmission, when the minimum bus
idle period that precedes the start of every data or remote frame transmission has elapsed.
It is negated at the start of a frame transmission.

o the Frame correct signal (C'hp,y) is asserted if a data or remote frame transmission ends
without errors. It is negated upon the assertion of Chgor.

e conversely, the Chg,, signal is asserted whenever an error flag, violating the bit-stuffing
coding rule is detected [8]. It is negated upon the assertion of the Chgor signal.

In the context of this document, one use of these signals is in the evaluation of the real value
of the Channel omission degree, as specified® in equation (1). A Channel exceeding the allowed
omission degree bound, k, given by property MCAN2, should be considered failed.

= Chog+1 if Chgy AN =Chpgg
C1hOd TChEOT { 0 if ChFok (1)

5.2 CAN Accessibility Constraints

The study of CAN accessibility constraints presented in [23] has established analytical expres-
sions for all inaccessibility events, showing that their durations are bounded, and allowing the
determination of those bounds.

In CANELy [17], the corrective actions taken to enforce the weak-fail-silent assumption for the
network components have allowed an interesting, though moderate, reduction of the inaccessibility
worst-case duration bounds, in some scenarios. These results are summarized in Figure 4. It
is worth noticing the low worst-case figure of the bus reconfiguration delay (209 ps @ 1Mbps),
compared with other failure scenarios and, in particular, with the 100 ms of commercial systems
currently available[13].

5The notation Tc;,; in equation (1)7 means it is evaluated upon the assertion of the Chgor signal.
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5.3 Inaccessibility Control Methods

The next step towards a reliable hard real-time operation of CAN concerns the accommodation
of the periods of inaccessibility in the timeliness model. This includes: the calculation of the real
worst-case message transmission delays; the calculation of the real worst-case protocol execution
times; the dimensioning of timeouts. These issues were addressed for the first time in [24, 22],
which provided a general analysis for LANs. We reanalyze the problem in the context of CAN.

Are LAN-based solutions effective in CAN?

Diffusion-based masking algorithms allow tolerance to k omission faults, without needing to use
timeouts: the protocol systematically repeats a transmission k41 times; network accessibility is
implicitly signaled, when a transmission is confirmed. A protocol inspired by this scheme is used
in CANELy, handling inconsistent omission failures [20].

Conversely, acknowledge-based algorithms or protocol entities performing the surveillance of
remote parties, make use of timeouts. In CANELy, timeout-based protocols are extensively used
[20, 19]. Timeout values are set as a function of protocol execution times, which in general include
terms that depend on the worst-case message transmission delay, Tyq (MCAN4). Let us assume
that: T4, represents the optimum value for the delay to detect a timing, omission or crash failure;
local clocks (timers) are used to implement timeouts.

INACCESSIBILITY ADDITION

The simplest method to control the effect of inaccessibility on the operation of timeout-based
protocols, is to add a corrective term, Tj,,, to the timeout values set in function of T3y (MCAN4).
T;nq is defined in MCAN3 and accounts for the worst-case duration of an inaccessibility incident.
No further action is needed to tolerate inaccessibility faults.

The engineering of such a method, called herein inaccessibility addition, is extremely simple,
given that the management of protocol timers can be easily mapped into the service interface of a
standard timer agency [1, 7]. However, the use of this method is not interesting if 7;,, has a value
much greater than T}q, as it happens at the lower levels of CAN communication.

INACCESSIBILITY TRAPPING

An alternative is to use inaccessibility trapping [24, 22]. This method is based on the transfor-
mation of inaccessibility periods into omissions.



Protocol timers, such as TyqstRemote in the diagram of Figure 6, do not include T},,, being set to
the optimum timeout value Ty4. A timer is started only after the confirmation that the transmission
was issued. Should the network be inaccessible, the confirmation does not come. The protocol is
prevented from proceeding and the timer start is postponed until the network becomes accessible
again (e.g. situation I1, in Figure 6). Furthermore, all inaccessibility events occuring between two
consecutive network accessibility signals (e.g. situations I2 and I3 in Figure 6) are transformed into
one “omission”. A timer may expire and a recovery process may have to be initiated. However, a
protocol designed to take care of k omissions in the system, will keep working for k+¢ “omissions”,
being 7 the maximum number of inaccessibility occurrences during protocol execution (MCAN3).

The analysis of the performance of LAN-based inaccessibility control methods, with respect to
the delay for the detection of a failure, is presented in the upper half of Figure 5. The inaccessibility
trapping method is effective in LANs, because the delay to detect the failure, i.e. absence of
acknowledgment after k+4+1 tries, is increased at most by ¢;,,, the real duration of an inaccessibility
incident, which may be much lower than T5,,.

Failure Detection Latency
Network Scenario Inac. Control Method
Addition ‘ Trapping
LANs no inac. | (k+1) . (Tiqg + Tina) (k+i+1).Tiq
(krre>0,irLe>1)| inac. |(k+1).(Tia+ Tina) | (k+i+1) . Tra + tina
CAN no inac. Tia + Tina 2.Tiq
(krrc=0,irLc=1)| Inac. Tia + Tinag 2. Tid+ ting

Figure 5: Effectiveness of LAN-based inaccessibility control in CAN

The results presented in the lower half of Figure 5, for CAN, are derived directly from the
LAN results, using the CAN LLC-level specific parameters. The frame retransmission scheme of
CAN: secures krrc =0, when a frame transmission is confirmed; makes useless the incorporation
of sender-based retry mechanisms on top of CAN; represents the fundamental reason why the
inaccessibility trapping method should be adapted and optimized for CAN operation.

send . User Interface
start timer ; ;
request M - . In LANS: retry recelve“‘tlmeout
| In CAN: send ("test") | ;
TwaitRemote F\| wait=—trap

' l CAN Standard Interface
.req .cnf -req .ind .cnf("test")
AN 2| <— Inaccessibility
(I1) (I2) (I3) (I4)

Figure 6: Timing of the CAN inaccessibility trapping method
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In a CAN-oriented version of the inaccessibility trapping method (Figure 6), an accessibility
test is started, upon a timeout. The properties of the priority-based CAN arbitration mechanism
are exploited for this purpose. A CAN remote frame, having a “dummy identifier” with an urgency
level lower than the message that is being awaited for by the protocol, is submitted for transmission.
If it is confirmed before the arrival of the expected message that is an implicit signal of network
accessibility and the protocol is notified that the timer has expired. Otherwise, the timeout signal
is ignored.

In consequence, all the inaccessibility periods occuring inside the interval defined by the ac-
cessibility signals implicitly provided by the standard CAN communication primitives, are seen as
“one” single event, securing 5,5, =1. Another consequence is that, upon a timeout, each expiring
timer is always extended by tygire1rap (cf. Figure 6), the effective duration of the accessibility test,
making inaccessibility trapping in CAN a non-optimal method with respect to: the utilization of
CAN bandwidth; the delay in the detection of a failure.

That is, none of the studied methods provide an effective solution for the problem of controlling
CAN inaccessibility at low-level protocols. The question that remains to be answered is whether
such a solution, even if tied to CAN, exists?

Towards CAN-oriented inaccessibility control methods

One idea would be the integration of inaccessibility control with the error notifications provided
by existing CAN controllers: protocol timers would be started with an optimum timeout value,
being extended by T;,, upon the notification of an error. Unfortunately: some CAN controllers
do not generate error notifications in all situations (e.g. overload errors [6]); the error notification
signal may not be delivered at some nodes (property LCAN1).

Other approach is the use of special-purpose mechanisms. Though we do not advocate the use
of such solutions as a general rule, in CAN those mechanisms are not complex to implement, being
common, in a great extent, to the bus media redundancy machinery.

For example, to evaluate CAN inaccessibility with respect to the number of events, we use the
Channel monitoring signals, Chg,, and Chgor, as specified® in equation (2).

Chy o = { Chre+ 1 if Chg,, @

Tergor 0 when mngt. request

The C'hr. counter is monotonically incremented, being cleared only through the issuing of a
specific layer management action request. In a period of reference T,4, the effective number of
inaccessibility incidents, i., is given by the variation of C'h;. (MCAN3).

On the other hand, to evaluate the duration of each CAN inaccessibility incident, one needs to
mark when a period of inaccessibility begins and of how long it lasts. Should a frame transfer be
disturbed by errors, a non-negligible time interval may exist between the beginning of the period of
inaccessibility and the start of error recovery’. That period needs to be accounted for, in addition
to the usually shorter period of error recovery, to obtain the total duration of the inaccessibility
event.

This calls for extra mechanisms, not available in commercial CAN controllers, and that did not
have to be included in the machinery of Figure 3, but that can be easily added to the latter.

We made the following operational assumptions concerning the observable behavior of CAN at
the PHY-MAC interface, as per the standard [8]:

6Again, the notation TC’:EOT’ means evaluation upon the assertion of the Chgor signal.
7Signa.led through the assertion of the Chg,,» signal.
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N1 - there 1s a detectable sequence that identifies the beginning of a possibly correct CAN data or
remote frame transmission,

N2 - there is a detectable and unique fived form sequence that identifies the correct transmission of
a CAN data or remote frame.

N3 - there is a detectable and unique fired form sequence that identifies the correct termination of
a CAN data or remote frame.

Assumption N1 describes the method used by standard CAN controllers to detect the beginning
of a frame transmission, after a minimum intermission (cf. Figure 3) period has elapsed. The
Chsor signal is asserted during one bit-time when a dominant (d) bit is detected after the assertion
of the Chgor signal, as described by equation (3).

true if Chgor ANChpr, = d
false when Chsor

Chsor — { (3)

Assumptions N2 and N3 specify, respectively, the conditions whereby a frame transfer is com-
pleted without being disturbed by omission failures or by other inaccessibility events (e.g. overload
errors). The C'hy,i and Chypg signals, specified by equations (4) and (5), are asserted only if no
violation in the termination sequence® of a data/remote frame occurs up to the first/second bit of

the intermission, respectively.

true 1if Chpy = rdrrrrrrrrr

Chror = { false when Chgor (4)
true if Chgr, = rdrrrrrrrrrr

Chirs = { false when Chgor (5)

In addition, we define an auxiliary signal, C'hror—p, as a one bit-time pulse signal generated
whenever the C'hr, is asserted.

A conservative approach is taken in assessing the duration of inaccessibility events: the schedul-
ing of a frame for retransmission is assumed, on account of a possible inconsistent omission; the
transmission of a data/remote frame is a priori considered a period of inaccessibility. Thus, equa-
tion (6) specifies that: a timer is started when the C'hgor signal is asserted; it is restarted when the
transmission of a data/remote frame succeeds and, again, when the minimum intermission period
has elapsed.

0 ifChSOF\/ChTOk_p\/Ch[FS
Tesina = Tesina + Toie  if “Chgor (6)
Te ina if Chgor

where: 7. _ina, 18 the normalized duration of one inaccessibility event; 7Ty, is the normalized duration
of a bit.

At this stage, we have succeeded in obtaining the means to assess CAN operation with respect

to the effective number, 4., and duration®, {._;,,, of a single inaccessibility event!C.

8A fixed form sequence of recessive(r)/dominant(d) bits.

°The real duration of an inaccessibility incident te_ing = Te_ina - tvit, where tp;¢ is the nominal bit time.

1°Other relevant inaccessibility timing parameters, such as ¢;,, and its upper bound T;,,, can be constructed from
equation (6) by layer management entities [17].
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Inaccessibility control in CANELy

In addition, we have to evaluate the duration of the effects of inaccessibility events and incor-

porate them on (timeout-based) protocol execution. These issues are fundamental.

In a lightly loaded network, one may expect that the retransmission of a frame upon a network
error may succeed before the protocols above CAN initiate recovery, due to a timeout. In those
cases, no extension of protocol timers is required. Conversely, in a heavily loaded network it
may happen that even a protocol timer started after the inaccessibility incident will need to be
compensated for the effects of CAN inaccessibility. A (simple) methodology able to treat all these
cases in an uniform manner is required.

INACCESSIBILITY FLUSHING

The method that we call inaccessibility flushing is inspired by the CAN inaccessibility trapping
algorithm. However, we avoid the “accessibility test” transmissions, that waste network bandwidth
(a scarce resource in CAN).

Let us assume that we assign to the accessibility test frame (cf. Figure 6) the “dummy identifier”
with the lowest urgency level in the system. This frame would only be transmitted after servicing
any other frame transmit request. In addition, let us assume that no node actually submits for
transmission the accessibility test frame. A corrective term, ¢, ;nq, equivalent to the tyqitetrap
delay in Figure 6, can still be obtained, provided one have a mechanism able to detect the “lack”
of those transmissions. This implies to extend our assumptions concerning the observable behavior

of CAN at the PHY-MAC interface:

N4 - there is a detectable and unique sequence that identifies the absence of frame transmissions

in the CAN bus.

Assumption N4 stipulates that the Chp;q. signal, given by equation (7), is asserted when the
minimum bus idle period that identifies the absence of any frame transmission, has elapsed. The
normalized duration of such a period exceeds exactly in one bit-time (73;;) the period corresponding
to the normalized duration of the End-Of-Transmission sequence (Tgor). Thus, Te=Tror+ Thit-

true i T(Chpy=1)>1TB

Chpidle = )
false if T(Chp,=1r) < TV Chp;=1d

An additional signal, C'hr,,, is asserted upon the detection of an inaccessibility event and
remains asserted as long as their effects last, being specified by equation:

true if Chg,,
false when Chp;qe

Chlna = { (8)

The Chyp, signal is used to derive from equation (6) the normalized duration of the entire
11.

period where the effects of inaccessibility last, 7._inq, as given by equation’*:
0 if (ChSOF\/ChTOk_p \/Ch]FS) A=China
Tecina =8 Tesina + Toit  if 2Chgor V Ching (9)
Teina if Chpidie

At this point, we have the means to control inaccessibility at all the relevant levels of the system.
For example, a protocol timer should be extended upon a timeout if the C'hy,, signal is asserted,

" The duration of te_ine = Te_ina - tpit, is upper bounded by Tec_ing.
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waiting for the end of the effects of network inaccessibility on network delays, signaled through the
negation of Chr,,. The details of this timer management procedure can be found in [17].

In addition, we have obtained other important system attribute: the capability of monitoring a
relevant set of dependability and timeliness-related parameters, having them available on a system-
wide basis.

Comparison of CAN inaccessibility control methods

The main attributes of the different CAN inaccessibility control methods we have been dis-
cussing are compared in Figure 7.

Since in CAN settings Tipnq assumes rather low values (2160 ps @ 1 Mbps), the inaccessibility
addition method may be used in application level protocols, leading only to slightly longer waiting
periods. The main advantage of this method is its simplicity. On the other hand, at low-level of
communication 7},, assumes values in the same order of magnitude or even higher than timeouts.
The inaccessibility addition method should not be used at this level, to ensure the preservation of
protocol timeliness-related parameters.

Attribute Inac. Control Method
Addition | Trapping Flushing
Complexity low fair high
Bandwidth overheads .
Specialized hardware .
Real timeout value Tida + Tina Tia
Failure detection | no inac.| Tig + Tina 2.T:q Tia
latency inac. | Tig + Ting |2.Tta+tina Tia+te_ina
Resilience to lack of none detects violation of
coverage ki, Tiq, Tina, Te_ina
Recommendation for application none CANELy low-level
usage level protocols

Figure 7: Comparison of CAN inaccessibility control methods

The inaccessibility trapping method performs very poorly in CAN and its use should be avoided
at all.

The inaccessibility flushing method exhibits optimum delays with regard to the detection of
failures. Being designed at the low-levels of communication, it exhibits the significant advantage
of allowing to monitor/detect a potential lack of coverage of the system assumptions and permit
management entities to act accordingly (e.g. stop in a fail-safe state).

6 Related Work

Given that network errors due occur, their effects must be taken into account in any realistic
analysis of CAN message schedulability guarantees [21]. In recent years, this issue has received
considerable attention from a number of authors. For example: the integration of inaccessibility in
the response time analysis of the CAN fieldbus is addressed in [14, 15]; preservation of CAN message
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timeliness, by aborting late messages is discussed in [2]; a strategy to protect CAN operation against
faulty nodes transmitting data/remote frames too often (babbling idiot) is discussed in [3].

7 Conclusions

We addressed a hard but important problem that may hinder the operation of CAN in critical
hard real-time settings: controlling its periods of inaccessibility. Whilst mainly relevant to simplex
configurations with dual-media, the solution is also applicable to individual replicas of a redundant
network.

Given that the operation of CAN can be disturbed by periods of inaccessibility, i.e. by faults that
temporarily prevent communication, we have provided the mechanisms to control inaccessibility in
CAN-based systems. This implies: ensuring that the number of inaccessibility periods and their
duration have a bound; verifying that the bound is in conformity with the service specification;
accommodating inaccessibility in protocol execution and timeliness calculations.

Parameter TTP CAN Standard Layer CANELy

Omission handling masking detection/recovery both algorithms
frame diffusion | frame retransmission

Inaccessibility duration bound | unknown 2880 bit-times 2160 bit-times

Inaccessibility control not completely | no application level
addressed low-level protocols

Media redundancy no no yes

Channel redundancy yes no yes (optional)

Babbling idiot bus guardian | not provided can be added

avoidance

Resilience to lack of never-give-up | none detects violation

coverage strategy of bounds

Figure 8: Comparison of timeliness-related attributes of TTP, CAN and CANELy

Finally, it is important to mention that this work is a brick in the CANELy architecture, the
CAN Enhanced Layer[17], a combination of the CAN standard layer with some simple machinery
resources and low-level protocols, described in several publications [23, 20, 16, 18, 19].

Through CANELy we made the proof of concept of the possibility of building CAN-based highly
fault-tolerant systems. For example, the main timeliness-related attributes of CANELy and their
comparison both with the stand-alone CAN and with the industry standard Time-Triggered Proto-
col (TTP) architecture, are summarized in Figure 8. We hope these results present a contribution
to dismiss ideas that CAN is not suited for hard real-time systems with very high dependability
requirements.
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